Câu hỏi:

20/04/2021 4,364

Xác định hình dạng tam giác ABC biết b3+c3a3b+ca=a2a=2bcosC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Theo định lí cosin ta có: cosC=a2+b2c22ab thay vào đẳng thức thứ hai của hệ trên. Ta có:

a=2bcosC=2b.a2+b2c22aba2=a2+b2c2b2c2=0b2=c2b=c

Thay b = c vào hệ thức thứ nhất ta có:

2b3a32ba=a22b3a3=2ba2a3b2=a2a=b

Do đó a = b = c. Vậy tam giác ABC đều

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Dễ thấy SΔABCSΔABM=4BCBM=4BC=4BMBC=4BM

TH1: BC=4BMBM=14BC 

thì x2=34y1=34x=54y=14x.y=516

TH2: BC=4BMBM=14BC

thì x2=34y1=34x=114y=74x.y=7716

Lời giải

Đáp án A

Theo định lí cosin ta có:

a2=b2+c22bccosA=72+522.7.5.35=32a=42

Từ công thức sin2A+cos2A=1sinA=45

Theo định lí sin ta có: asinA=2R

R=a2sinA=422.45=522

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP