Câu hỏi:

28/05/2021 663

Cho ΔABC, hai đường cao BD và CE. Gọi M là trung điểm của BC. Em hãy chọn câu sai:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Vì M là trung điểm của BC(gt) suy ra BM = MC (tính chất trung điểm), loại đáp án A

Xét ΔvBCD có M là trung điểm BC (gt) suy ra EM là trung tuyến

EM=BC2 (1) (trong tam giác vuông đường trung tuyến với cạnh huyền bằng nửa cạnh ấy)

Xét ΔvBCD có M là trung điểm BC(gt) suy ra DM trung tuyến

DM=MB=BC2 (2) (trong tam giác vuông đường trung tuyến với cạnh huyền bằng nửa cạnh ấy)

Từ (1) và (2) EM=DMM thuộc đường trung trực DE. Loại đáp án B, chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Gỉa sử ΔABC có AM là đường phân giác đồng thời là đường trung trực ứng với cạnh BC

Vì AM là đường phân giác của ΔABC (gt) BAM^=MAC^ (tính chất tia phân giác )

Vì AM là đường trung trực của BC nên

AMBCAMB^=AMC^=90o

Xét ΔABM và ΔACM có:

AMB^=AMC^=90o (cmt)

AM chung

BAM^=MAC^ (cmt)

ΔABM=ΔACM(g.c.g)

AB=AC (hai cạnh tương ứng) ΔABC cân tại A

Câu 2

Lời giải

Đáp án C

Gỉa sử đường trung trực của OA cắt OA tại H; đường trung trực của OB cắt OB tại K

Vì HI là đường trung trực của OA nên IO = IA (tính chất đường trung trực của đoạn thẳng)

Vì KI là đường trung trực của OB nên IO = IB (tính chất đường trung trực của đoạn thẳng)

Do đó: IA=IB(=IO)

Xét ΔOIAΔOIB có:

IA=IB(cmt)IOchungOA=OB(gt)

ΔOIA=ΔOIB(c.c.c)O1^=O2^ (hai góc tương ứng)

Vậy OI là tia phân giác của xOy^. Đáp án A đúng

Theo giả thiết: OA=OB suy ra O thuộc đường trung trực của đoạn thẳng AB

Theo chứng minh trên ta có IA=IB suy ra I thuộc đường trung trực của đoạn thẳng AB

Do đó OI là đường trung trực của đoạn thẳng AB

Đáp án B đúng

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP