Câu hỏi:
06/02/2021 22,534Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD. Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD).
Quảng cáo
Trả lời:
Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó
Ta có mặt phẳng (ABCD) có vectơ pháp tuyến là , mặt phẳng (GMN) có vectơ pháp tuyến là
Gọi (α) là góc giữa hai mặt phẳng (GMN) và (ABCD), ta có
Gọi là góc giữa (GMN) và (ABCD)
Gọi E, F lần lượt là hình chiếu của M và N lên (ABCD). Suy ra E, F lần lượt là trung điểm của HC, HD.
Gọi H, I lần lượt là trung điểm của AB, CD.
Mà d ⊥ (SIH) nên góc giữa góc giữa hai mặt phẳng (GMN) và (ABCD) là
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi I = d ∩ ∆. Do I ∈ ∆ nên I (2t + 1; t – 1; -t). Suy ra
Suy ra , từ đó suy ra d có một vectơ chỉ phương là
và đi qua M (2;1; 0) nên có phương trình:
Lời giải
Chọn B
Gọi B (0;0;b) là giao điểm của đường thẳng d và trục Oz.
Vì đường thẳng d song song với mặt phẳng (P) nên:
Phương trình tham số của d đi qua A(1;2;3) nhận làm VTCP là:
Mặt khác ta thấy điểm M(0;0;2) thuộc vào d nên phương trình tham số của d còn có thể viết dưới dạng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.