Câu hỏi:

06/02/2021 12,818

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y+1)²+ (z-2)²=  16 và điểm A (1;2;3). Ba mặt phẳng thay đổi đi qua I là tâm của mặt cầu (S) và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho ba mặt phẳng đôi một vuông góc với nhau (P), (Q), (R) tại I. Hạ AH, AD, AE lần lượt vuông góc với ba mặt phẳng trên thì ta luôn có: IA²=AD²+AH²+AE².

Chứng minh:

Chọn hệ trục tọa độ với I (0;0;0), ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R).

Khi đó A (a, b, c) thì IA²=a²+b²+c²=d² (A, (Iyz))+d² (A, (Ixz))+d² (A, (Ixy)) hay IA²=AD²+AH²+AE² #đpcm~.

Áp dụng:

Mặt cầu (S) có tâm I (1;-1;2) và có bán kính r=4 ; 

Gọi và ri là tâm và bán kính của các đường tròn i = {1;2;3}

Ta có tổng diện tích các đường tròn là

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi I = d . Do I nên I (2t + 1; t – 1; -t). Suy ra 

Suy ra , từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2;1; 0) nên có phương trình:

Lời giải

Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó

Ta có mặt phẳng (ABCD) có vectơ pháp tuyến là , mặt phẳng (GMN) có vectơ pháp tuyến là

Gọi (α) là góc giữa hai mặt phẳng (GMN) và (ABCD), ta có

Gọi φ là góc giữa (GMN) và (ABCD)

Gọi E, F lần lượt là hình chiếu của M và N lên (ABCD). Suy ra E, F lần lượt là trung điểm của HC, HD.

Gọi H, I lần lượt là trung điểm của AB, CD.

Mà d (SIH) nên góc giữa góc giữa hai mặt phẳng (GMN) và (ABCD) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP