Câu hỏi:
06/02/2021 9,865Trong không gian Oxyz, cho bốn đường thẳng ;;; . Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Chọn D
Đường thẳng d₁ đi qua điểm M₁ = (3;-1;-1) và có một véctơ chỉ phương là
Đường thẳng d₂ đi qua điểm M₂ = (0;0;1) và có một véctơ chỉ phương là
Do và M₁ ∉ d₁ nên hai đường thẳng d₁ và d₂ song song với nhau.
Gọi (α) là mặt phẳng chứa d₁ và d₂ khi đó (α) có một véctơ pháp tuyến là . Phương trình mặt phẳng (α) là x+y+z-1=0.
Do không cùng phương với nên đường thẳng AB cắt hai đường thẳng d₁ và d₂.
Vậy có 1 đường thẳng cắt cả bốn đường thẳng trên
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;0) và đường thẳng .Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là:
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;3) và mặt phẳng (P): 2x+y-4z+1=0, đường thẳng d đi qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số của đường thẳng d.
Câu 3:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD. Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD).
Câu 4:
Trong không gian tọa độ Oxyz, cho tam giác ABC biết A (1;0;-1), B (2;3;-1), C (-2;1;1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp của tam giác ABC và vuông góc với mặt phẳng (ABC) là:
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho (P): x - 2y + 2z - 5 = 0, A (-3;0;1), B (1;-1;3). Viết phương trình đường thẳng d đi qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.
Câu 6:
Trong không gian Oxyz, cho điểm M (1;1;2). Mặt phẳng (P) qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất. Gọi là một véc tơ pháp tuyến của (P). Tính S = a³ - 2b.
về câu hỏi!