Câu hỏi:

24/12/2019 1,846

Cho lăng trụ đứng ABC.A'B'C' có tam giác ABC vuông cân tại A, AB = AC = 2a, AA' = 3a. Gọi M là trung điểm AC, N là trung điểm BC. Khoảng cách từ điểm C đến mặt phẳng (A'MN)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có:

SMNC=SABC4=a22(đvdt).

VA'MNC=13AA'.SMNC=a32  (đvtt).

Mặt khác: MN//ABMNAC 

Mà AA'mp(ABC)MNAA'

Do đó SA'MN=12A'M.MN=12AA'2+AM2=a1022   (đvdt).

d(C;(A'MN))=3VA'MNCSA'MN=3a10  (đvđd).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Gọi M, N lần lượt là trung điểm của AB và CD

Tam giác SAB cân tại S suy ra SMAB 

SMd, với d=(SAB)(SCD) 

(SAB)(SCD) suy ra SM(SCD)

Kẻ SHMNSH(ABCD) 

Ta có SSAB+SSCD=7a210 

 

SM+SN=7a5

Tam giác SMN vuông tại S nên SM2+SN2=MN2=a2 

Giải hệ SM+SN=7a5SM2+SN2=a2

Vậy thể tích khối chóp  VS.ABCD=13.SABCD.SH=4a325

Lời giải

Đáp án B

Ta có mặt bên là hình chữ nhật có diện tích bằng 3a2

chiều cao của lăng trụ là 3a2a=3a.

Có diện tích đáy hình trụ bằng S=πa2 

Vậy V=3a.πa2=3πa2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP