Câu hỏi:

24/12/2019 1,944

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt phẳng (SAB) vuông góc với đáy (ABCD). Gọi H là trung điểm của AB, SH = HC,SA = AB. Gọi α là góc giữa đường thẳng SC và mặt phẳng (ABCD). Giá trị chính xác của tanα là?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Hướng dẫn giải: Ta có:

 

AH2+SA2=5a24=SH2SAH vuông tại A

Do đó mà SA(ABCD) nên

 

  (Mặt phẳng (SAB) vuông góc với đáy (ABCD)) 

Trong tam giác vuông SAC, có

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Gọi M, N lần lượt là trung điểm của AB và CD

Tam giác SAB cân tại S suy ra SMAB 

SMd, với d=(SAB)(SCD) 

(SAB)(SCD) suy ra SM(SCD)

Kẻ SHMNSH(ABCD) 

Ta có SSAB+SSCD=7a210 

 

SM+SN=7a5

Tam giác SMN vuông tại S nên SM2+SN2=MN2=a2 

Giải hệ SM+SN=7a5SM2+SN2=a2

Vậy thể tích khối chóp  VS.ABCD=13.SABCD.SH=4a325

Lời giải

Đáp án B

Ta có mặt bên là hình chữ nhật có diện tích bằng 3a2

chiều cao của lăng trụ là 3a2a=3a.

Có diện tích đáy hình trụ bằng S=πa2 

Vậy V=3a.πa2=3πa2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP