Câu hỏi:

24/12/2019 3,862

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Biết SA vuông góc với mặt đáy, SB = 2a. Gọi M, N lần lượt là trung điểm SB, BC. Tính thể tích V của khối chóp A.SCNM?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Hướng dẫn giải:

Ta có SABC=a22, SA=SB2-AB2=a3

VS.ABC=13SA.SABC=13a3.a22=a336

Ta lại có VB.NAMVB.CAS=BNBC.BMBS=14

VB.NAM=14VB.CAS

Kết luận VA.SCNM=VS.ABC-VB.NAM=a338

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Gọi M, N lần lượt là trung điểm của AB và CD

Tam giác SAB cân tại S suy ra SMAB 

SMd, với d=(SAB)(SCD) 

(SAB)(SCD) suy ra SM(SCD)

Kẻ SHMNSH(ABCD) 

Ta có SSAB+SSCD=7a210 

 

SM+SN=7a5

Tam giác SMN vuông tại S nên SM2+SN2=MN2=a2 

Giải hệ SM+SN=7a5SM2+SN2=a2

Vậy thể tích khối chóp  VS.ABCD=13.SABCD.SH=4a325

Lời giải

Đáp án B

Ta có mặt bên là hình chữ nhật có diện tích bằng 3a2

chiều cao của lăng trụ là 3a2a=3a.

Có diện tích đáy hình trụ bằng S=πa2 

Vậy V=3a.πa2=3πa2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP