Câu hỏi:
11/07/2024 1,171Cho hàm số y = – 0,00188(x – 251,5)2 + 118.
a) Viết công thức xác định hàm số trên về dạng đa thức theo lũy thừa với số mũ giảm dần của x.
b) Bậc của đa thức trên bằng bao nhiêu?
c) Xác định hệ số của x2, hệ số của x và hệ số tự do.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: y = – 0,00188(x – 251,5)2 + 118
⇔ y = – 0,00188(x2 – 503x + 63252,25) + 118
⇔ y = – 0,00188x2 + 0,94564x – 118,91423 + 118
⇔ y = – 0,00188x2 + 0,94564x – 0,91423
Vậy công thức hàm số được viết về dạng đa thức theo lũy thừa giảm dần của x là y = – 0,00188x2 + 0,94564x – 0,91423.
b) Đa thức – 0,00188x2 + 0,94564x – 0,91423 có bậc là 2. (bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức)
c) Trong đa thức trên, ta có:
+ Hệ số của x2 là: –0,00188
+ Hệ số của x là: 0,94564
+ Hệ số do là: – 0,91423.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ tọa độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng có vị trí tọa độ (162; 0). Biết một điểm M trên cổng có tọa độ là (10; 43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.
Câu 2:
Vẽ đồ thị mỗi hàm số bậc hai sau:
a) y = x2 – 4x – 3;
b) y = x2 + 2x + 1;
c) y = – x2 – 2.
Câu 3:
Vẽ đồ thị của mỗi hàm số sau:
a) y = 2x2 – 6x + 4;
b) y = – 3x2 – 6x – 3.
Câu 4:
Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a, b, c lần lượt là hệ số của x2, hệ số của x và hệ số tự do.
a) y = – 3x2;
b) y = 2x(x2 – 6x + 1);
c) y = 4x(2x – 5).
Câu 5:
Lập bảng biến thiên của mỗi hàm số sau:
a) y = x2 – 3x + 4;
b) y = – 2x2 + 5.
Câu 6:
Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:
a) y = 5x2 + 4x – 1;
b) y = – 2x2 + 8x + 6.
Câu 7:
Xác định parabol y = ax2 + bx + 4 trong mỗi trường hợp sau:
a) Đi qua điểm M(1; 12) và N(– 3; 4);
b) Có đỉnh là I(– 3; – 5).
về câu hỏi!