Câu hỏi:
12/07/2024 49,011
Tổng chi phí T (đơn vị: nghìn đồng) để sản xuất Q sản phẩm được cho bởi biểu thức T = Q2 + 30Q + 3 300; giá bán của 1 sản phẩm là 170 nghìn đồng. Số sản phẩm được sản xuất trong khoảng nào để đảm bảo không bị lỗ (giả thiết các sản phẩm được bán hết)?
Tổng chi phí T (đơn vị: nghìn đồng) để sản xuất Q sản phẩm được cho bởi biểu thức T = Q2 + 30Q + 3 300; giá bán của 1 sản phẩm là 170 nghìn đồng. Số sản phẩm được sản xuất trong khoảng nào để đảm bảo không bị lỗ (giả thiết các sản phẩm được bán hết)?
Câu hỏi trong đề: Bài tập Bất phương trình bậc hai một ẩn có đáp án !!
Quảng cáo
Trả lời:
Theo đề bài, ta có điều kiện của Q là: .
Giá bán 1 sản phẩm là 170 nghìn đồng, do đó giá bán Q sản phẩm là 170Q (nghìn đồng), đây chính là doanh thu sau khi bán Q sản phẩm.
Tổng chi phí để sản xuất Q sản phẩm là T = Q2 + 30Q + 3 300 (nghìn đồng).
Để không bị lỗ thì doanh thu phải lớn hơn hoặc bằng chi phí sản xuất, do đó 170Q ≥ T hay T ≤ 170Q. Khi đó ta có: Q2 + 30Q + 3 300 ≤ 170Q
⇔ Q2 + (30Q – 170Q) + 3 300 ≤ 0
⇔ Q2 – 140Q + 3 300 ≤ 0, đây là một bất phương trình bậc hai một ẩn Q.
Tam thức bậc hai Q2 – 140Q + 3 300 có hai nghiệm là Q1 = 30, Q2 = 110 và có hệ số a = 1 > 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của Q sao cho tam thức Q2 – 140Q + 3 300 mang dấu “–” là (30; 110).
Do đó tập nghiệm của bất phương trình Q2 – 1400Q + 3 300 ≤ 0 là [30; 110].
Vậy số sản phẩm được sản xuất trong khoảng từ 30 đến không quá 110 sản phẩm thì sẽ không bị lỗ.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) 2x2 – 5x + 3 > 0
Tam thức bậc hai 2x2 – 5x + 3 có hai nghiệm x1 = 1, x2 = và có hệ số a = 2 > 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức 2x2 – 5x + 3 mang dấu “+” là x < 1 hoặc x > .
Vậy tập nghiệm của bất phương trình 2x2 – 5x + 3 > 0 là
b) – x2 – 2x + 8 ≤ 0
Tam thức bậc hai – x2 – 2x + 8 có hai nghiệm là x1 = – 4, x2 = 2 và hệ số a = – 1 < 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – x2 – 2x + 8 không dương là x ≤ – 4 hoặc x ≥ 2.
Vậy tập nghiệm của bất phương trình – x2 – 2x + 8 là (– ∞; – 4] ∪ [2; + ∞).
c) 4x2 – 12x + 9 < 0
Tam thức bậc hai 4x2 – 12x + 9 có ∆ = (– 12)2 – 4 . 4 . 9 = 0.
Do đó tam thức trên có nghiệm kép là x = .
Lại có hệ số a = 4 > 0.
Sử dụng định lý về dấu của tam thức bậc hai ta có: 4x2 – 12x + 9 > 0 với mọi và 4x2 – 12x + 9 = 0 tại x = .
Vậy không tồn tại giá trị nào của x để 4x2 – 12x + 9 < 0 hay bất phương trình đã cho vô nghiệm.
d) – 3x2 + 7x – 4 ≥ 0
Tam thức bậc hai – 3x2 + 7x – 4 có hai nghiệm x1 = 1, x2 = và hệ số a = – 3 < 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy – 3x2 + 7x – 4 không âm khi .
Vậy tập nghiệm của bất phương trình – 3x2 + 7x – 4 ≥ 0 là .
Lời giải
Phương trình 2x2 + (m + 1)x + m – 8 = 0 (1) là phương trình bậc hai một ẩn với ẩn x và m là tham số.
Ta có: a = 2, b = m + 1, c = m – 8 và
∆ = (m + 1)2 – 4 . 2 . (m – 8) = m2 + 2m + 1 – 8m + 64 = m2 – 6m + 65.
Phương trình (1) có nghiệm khi và chỉ khi ∆ ≥ 0
⇔ m2 – 6m + 65 ≥ 0, đây là bất phương trình bậc hai một ẩn với ẩn m.
Ta giải bất phương trình trên.
Tam thức bậc hai m2 – 6m + 65 có ∆m = (– 6)2 – 4 . 1 . 65 = – 224 < 0 và hệ số am = 1 > 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tam thức m2 – 6m + 65 mang dấu dương với mọi .
Do đó m2 – 6m + 65 > 0 với mọi số thực m.
Vậy phương trình (1) luôn có nghiệm với mọi giá trị thực của m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.