Câu hỏi:

11/07/2024 7,547

Công ty An Bình thông báo giá tiền cho chuyến đi tham quan của một nhóm khách du lịch như sau:

10 khách đầu tiên có giá vé là 800 000 đồng/người. Nếu có nhiều hơn 10 người đăng kí thì cứ có thêm 1 người, giá vẽ sẽ giảm 10 000 đồng/người cho toàn bộ hành khách.

a) Gọi x là số lượng khách từ người thứ 11 trở lên của nhóm. Biểu thị doanh thu theo x.

b) Số người của nhóm khách du lịch nhiều nhất là bao nhiêu thì công ty không bị lỗ? Biết rằng chi phí thực sự cho chuyến đi là 700 000 đồng/người.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) x là số lượng khách từ người thứ 11 trở lên của nhóm. (x* )

Tổng số khách là: 10 + x  (người)

Nếu có nhiều hơn 10 người đăng kí thì cứ có thêm 1 người, giá vẽ sẽ giảm 10 000 đồng/người cho toàn bộ hành khách, do đó giá tiền cho chuyến đi của một người khi có 10 + x người tham gia là: 800 000 – 10 000x (đồng).

Khi đó doanh thu của công ty là: y = (800 000 – 10 000x)(10 + x)

y = 8 000 000 + 800 000x – 100 000x – 10 000x2

y = – 10 000x2 + 700 000x + 8 000 000

Vậy doanh thu của công ty theo x là: y = – 10 000x2 + 700 000x + 8 000 000.

b) Chi phí thực sự cho chuyến đi là 700 000 đồng/người nên tổng chi phí cho 10 + x người tham gia là 700 000(10 + x) (đồng).

Để công ty không bị lỗ thì doanh thu phải lớn hơn hoặc bằng tổng chi phí.

Do đó y ≥ 700 000(10 + x)

– 10 000x2 + 700 000x + 8 000 000 ≥ 700 000(10 + x)

– 10 000x2 + 1 000 000 ≥ 0

x2 – 100 ≤ 0

Áp dụng định lý dấu của tam thức bậc hai, ta giải được bất phương trình trên.

Ta có: x2 – 100 ≤ 0 – 10 ≤ x ≤ 10,

Mà x là số tự nhiên nên 0 ≤ x ≤ 10.

Do đó thêm nhiều nhất là 10 người nữa thì công ty không bị lỗ hay số người của nhóm khách du lịch lúc này là 10 + 10 = 20 người.

Vậy số người có nhóm du lịch nhiều nhất 20 người thì công ty không bị lỗ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề bài, ta có điều kiện của Q là: .

Giá bán 1 sản phẩm là 170 nghìn đồng, do đó giá bán Q sản phẩm là 170Q (nghìn đồng), đây chính là doanh thu sau khi bán Q sản phẩm.

Tổng chi phí để sản xuất Q sản phẩm là T = Q2 + 30Q + 3 300 (nghìn đồng).

Để không bị lỗ thì doanh thu phải lớn hơn hoặc bằng chi phí sản xuất, do đó 170Q ≥ T hay T ≤ 170Q. Khi đó ta có: Q2 + 30Q + 3 300 ≤ 170Q

Q2 + (30Q – 170Q) + 3 300 ≤ 0

Q2 – 140Q + 3 300 ≤ 0, đây là một bất phương trình bậc hai một ẩn Q.

Tam thức bậc hai Q2 – 140Q + 3 300 có hai nghiệm là Q1 = 30, Q2 = 110 và có hệ số a = 1 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của Q sao cho tam thức Q2 – 140Q + 3 300 mang dấu “–” là (30; 110).

Do đó tập nghiệm của bất phương trình Q2 – 1400Q + 3 300 ≤ 0 là [30; 110].

Vậy số sản phẩm được sản xuất trong khoảng từ 30 đến không quá 110 sản phẩm thì sẽ không bị lỗ.

Lời giải

a) 2x2 – 5x + 3 > 0

Tam thức bậc hai 2x2 – 5x + 3 có hai nghiệm x1 = 1, x2 = 32  và có hệ số a = 2 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức 2x2 – 5x + 3 mang dấu “+” là x < 1 hoặc x >32 .

Vậy tập nghiệm của bất phương trình 2x2 – 5x + 3 > 0 là ;132;+.

b) – x2 – 2x + 8 ≤ 0

Tam thức bậc hai – x2 – 2x + 8 có hai nghiệm là x1 = – 4, x2 = 2 và hệ số a = – 1 < 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – x2 – 2x + 8 không dương là x ≤ – 4 hoặc x ≥ 2.

Vậy tập nghiệm của bất phương trình – x2 – 2x + 8 là (– ; – 4] [2; + ).

c) 4x2 – 12x + 9 < 0

Tam thức bậc hai 4x2 – 12x + 9 có ∆ = (– 12)2 – 4 . 4 . 9 = 0.

Do đó tam thức trên có nghiệm kép là x =32 .

Lại có hệ số a = 4 > 0.

Sử dụng định lý về dấu của tam thức bậc hai ta có: 4x2 – 12x + 9 > 0 với mọi x\32  và 4x2 – 12x + 9 = 0 tại x =32 .

Vậy không tồn tại giá trị nào của x để 4x2 – 12x + 9 < 0 hay bất phương trình đã cho vô nghiệm.

d) – 3x2 + 7x – 4 ≥ 0

Tam thức bậc hai – 3x2 + 7x – 4 có hai nghiệm x1 = 1, x2 =43  và hệ số a = – 3 < 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy – 3x2 + 7x – 4 không âm khi 1x43 .

Vậy tập nghiệm của bất phương trình – 3x2 + 7x – 4 ≥ 0 là 1;  43 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay