Câu hỏi:

12/07/2024 32,240

Để leo lên một bức tường, bác Nam dùng một chiếc thang có chiều dài cao hơn bức tường đó 1 m. Ban đầu, bác Nam đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng và mép trên bức tường (Hình 33a). Sau đó, bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m thì bác Nam nhận thấy thang tạo với mặt đất một góc 60° (Hình 33b). Bức tường cao bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Để leo lên một bức tường, bác Nam dùng một chiếc thang có chiều dài cao hơn bức tường đó 1 m (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi chiều cao của bức tường là x (mét) (x > 0).

Vì chiếc thang cao hơn tường 1 m nên chiều cao của chiếc thang là x + 1 (m).

Khi đó quan sát Hình 33a ta thấy, AC = x, AB = x + 1, tam giác ABC vuông tại C, áp dụng định lý Pythagore ta có: AB2 = AC2 + BC2

Suy ra: BC2 = AB2 – AC2 = (x + 1)2 – x2 = 2x + 1 BC=2x+1  (m).

Quan sát Hình 33b, ta thấy chiều cao bức tường không thay đổi nên DG = x (m).

Khi bác Nam dịch chuyển chân thang vào gần tường thêm 0,5 m thì GE = BC – 0,5.

Suy ra GE=2x+10,5   (m)

Lại có tam giác DGE vuông tại G nên ta có:tanDEG^=DGGE

DEG^=60° , DG = x, GE=2x+10,5

Do đó: x2x+10,5=tan60°=3

Suy ra: x=32x+10,5

x=32x+132

   32x+1=x+32(1)

Bình phương hai vế của (1) ta được: 32x+1=x+322

6x+3=x2+3x+34

x2+36x94=0

x=63+4812324,7x=634812320,5

  Do x > 0 nên x 4,7 là giá trị thỏa mãn.

Vậy bức tường cao khoảng 4,7 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi 148 phút = 3715  giờ.

Gọi khoảng cách từ vị trí B đến M là x (km, x > 0).

Khi đó ta có: AB = 4 km, BM = x km, BC = 7 km, MC = BC – BM = 7 – x (km).

Tam giác ABM vuông tại B, áp dụng định lý Pythagore ta có:

AM2 = AB2 + BM2 = 42 + x2 = 16 + x2

AM=16+x2

Do đó khoảng cách từ vị trí A đến M là16+x2  km và vận tốc chèo thuyền là 3 km/h nên thời gian chèo thuyền từ A đến M là t1=16+x23  (giờ).

Khoảng cách từ M đến C là 7 – x (km) và người đó đi bộ với vận tốc 5 km/h nên thời gian đi bộ từ M đến C là t2=7x5  (giờ).

Thời gian người đó đi từ A đến C chính bằng tổng thời gian người đó đi từ A đến M và từ M đến C nên ta có t1 + t2 = t = 3715  (giờ).

Khi đó ta có phương trình: 16+x23+7x5=3715516+x2+3.7x=37

 516+x2=16+3x (1)

Bình phương cả hai vế của (1) ta được: 25.(16 + x2) = (16 + 3x)2

400 + 25x2 = 256 + 96x + 9x2

16x2 – 96x + 144 = 0

  x = 3 (thỏa mãn điều kiện x > 0)

Vậy khoảng cách từ vị trí B đến vị trí M là 3 km.

Lời giải

Đổi: 300 m = 0,3 km; 800 m = 0,8 km; 7,2 phút = 0,12 giờ.

Gọi độ dài khoảng cách từ vị trí C đến D là x (km, x > 0).

Khi đó ta có: AC = 0,3 km; CD = x km; BC = 0,8 km; DB = BC – CD = 0,8 – x (km).

Lại có tam giác ACD vuông tại C, áp dụng định lý Pythagore ta có:

AD2 = AC2 + CD2 = (0,3)2 + x2 = 0,09 + x2

 AD=0,09+x2 (km)

Do đó khoảng cách từ vị trí A đến vị trí D là 0,09+x2  km, mà vận tốc chèo thuyền là 6 km/h và vận tốc dòng nước không đáng kể nên thời gian người đó chèo thuyền từ vị trí A đến vị trí D là t1=0,09+x26  (giờ).

Quãng đường từ vị trí D đến vị trí B là 0,8 – x (km) và vận tốc chạy bộ là 10 km/h nên thời gian người đó chạy bộ từ vị trí D đến vị trí B là  t2=0,8x10 (giờ).

Tổng thời gian người đó chèo thuyền là  t1 + t2 = t = 0,12 (giờ).

Khi đó ta có phương trình:  0,09+x26+0,8x10=0,12

50,09+x230+30,8x30=0,12

50,09+x2+2,43x=3,6

50,09+x2=1,2+3x (1)

Bình phương cả hai vế của (1) ta được: 25.(0,09 + x2) = (1,2 + 3x)2

2,25 + 25x2 = 1,44 + 7,2x + 9x2

16x2 – 7,2x + 0,81 = 0

x = 0,225 (thỏa mãn điều kiện x > 0)

Suy ra x = 0,225 km = 225 m.

Vậy khoảng cách từ vị trí C đến D là 225 m. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay