Câu hỏi:
13/07/2024 10,412
Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn: ; . Tính độ dài các vectơ .
Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn: ; . Tính độ dài các vectơ .
Câu hỏi trong đề: Bài tập Tổng và hiệu của hai vectơ có đáp án !!
Quảng cáo
Trả lời:
Vì K là điểm thỏa mãn nên K là trung điểm của AC.
Vì G là điểm thỏa mãn nên G là trọng tâm của tam giác ABC.
Vì H là điểm thỏa mãn nên H là trọng tâm của tam giác ADC.
Do ABCD là hình vuông nên hai đường chéo AC, BD bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường nên K cũng là trung điểm của BD hay K chính là tâm của hình vuông ABCD.
Trong tam giác ABC, có BK là đường trung tuyến nên G ∈ BK và (suy ra từ tính chất trọng tâm tam giác).
Trong tam giác ADC, có DK là đường trung tuyến nên H ∈ DK và (suy ra từ tính chất trọng tâm tam giác).
Suy ra H, K, G thẳng hàng và cùng thuộc DB.
Hình vuông ABCD cạnh a nên AC = BD = .
Khi đó: AK = KC = DK = KB = AC = BD = .
Ta có: GH = GK + KH =
.
Lại có: .
Xét tam giác AKG vuông tại K (AC ⊥ BD tại K), áp dụng định lí Pythagore ta có:
AG2 = AK2 + KG2
Suy ra AG = .
Vậy ta tính được độ dài các vectơ là:
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Dựng hình bình hành ABDC, nối A với D.
Áp dụng quy tắc hình hình hành ta có: .
Khi đó .
Do tam giác ABC đều nên AB = AC = BC = a.
Suy ra hình bình hành ABDC là hình thoi.
Nên BD = AB = a.
Ta có: (tam giác ABC đều)
Suy ra (AC // BD, hai góc trong cùng phía bù nhau).
Xét tam giác ABD, áp dụng định lí côsin ta có:
AD2 = AB2 + BD2 – 2 . AB . BD . cosB
= a2 + a2 – 2 . a . a . cos120° = 3a2
Suy ra .
Vậy .
Lời giải
a) Do ABCD là hình bình hành nên .
Do đó: .
Vậy .
b) Vì O là giao điểm của hai đường chéo AC và BD của hình bình hành ABCD nên O là trung điểm của AC và BD.
Do đó: .
Ta có:
(1)
Và
(2)
Từ (1) và (2) suy ra .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.