Câu hỏi:

13/07/2024 5,104

Các bất phương trình nào sau đây là bất phương trình bậc hai một ẩn? Nếu là bất phương trình bậc hai một ẩn, x = 2 có là nghiệm của bất phương trình đó hay không?

a) x2 + x – 6 ≤ 0;

b) x + 2 > 0;

c) – 6x2 – 7x + 5 > 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) x2 + x – 6 ≤ 0 có dạng ax2 + bx + c ≤ 0 với a = 1, b = 1, c = -6 là một bất phương trình bậc hai một ẩn.

Vì 22 + 2 – 6 = 0 nên x = 2 là một nghiệm của bất phương trình bậc hai một ẩn đã cho.

b) x + 2 > 0 không là bất phương trình bậc hai một ẩn.

c) – 6x2 – 7x + 5 > 0 có dạng ax2 + bx + c > 0 với a = -6, b = -7 và c = 5 là một bất phương trình bậc hai một ẩn.

Vì -6.22 – 7.2 + 5 = -33 < 0 nên x = 2 không là một nghiệm của bất phương trình bậc hai một ẩn đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mảnh đất hình chữ nhật có 30m hàng rào nghĩa là chu vi mảnh đấy hình chữ nhật là 30m. Khi đó nửa chu vi của hình chữ nhật là 30 : 2 = 15 (m).

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (0 < x < 15).

Chiều dài hình chữ nhật là: 15 – x (m).

Diện tích mảnh đất hình chữ nhật là x(15 – x) = - x2 + 15x (m).

Vì diện tích mảnh vườn hoa ít nhất là 50 m2 nên – x2 + 15x ≥ 50 - x2 + 15x – 50 ≥ 0.

Tam thức bậc hai – x2 + 15x – 50 có ∆ = 152 – 4.(-1).(-50) = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 5, x2 = 10 và a = -1 < 0.

Suy ra f(x) dương khi x nằm trong khoảng (5; 10) và f(x) = 0 khi x = 5 hoặc x = 10.

Do đó đó - x2 + 15x – 50 ≥ 0 khi x [5; 10].

Vậy chiều rộng của mảnh vườn nằm trong đoạn [5; 10] thì thỏa mãn yêu cầu bài toán.

Lời giải

a) Xét hiệu h(t) – 7 = - 4,9t2 + 10t + 1,6 – 7 = - 4,9t2 + 10t – 5,4 là hàm số bậc hai với a = -4,9, b = 10, c = - 5,4 và ∆ = 102 – 4.(-4,9).(-5,4) = -5,84 < 0. Do đó tam thức -4,9t2 + 10t – 5,4 vô nghiệm và a = - 4,9 > 0 nên - 4,9t2 + 10t – 5,4 < 0 với mọi t hay h(t) – 7 < 0 với mọi t.

h(t) < 7 với mọi t.

Vì vậy bóng không thể đạt độ cao trên 7m.

b) Bóng ở độ cao trên 5m nghĩa là h(t) ≥ 5 -4,9t2 + 10t + 1,6 ≥ 5

-4,9t2 + 10t + 1,6 – 5 ≥ 0.

-4,9t2 + 10t – 3,4 ≥ 0.

Tam thức k(t) = -4,9t2 + 10t – 3,4 có ∆ = 102 – 4.(-4,9).(-3,4) = 33,36 > 0. Do đó k(t) có hai nghiệm phân biệt t1 ≈ 1,61 và t2 ≈ 0,43.

Suy ra k(t) > 0 khi t (0,43; 1,61).

Khi đó bóng ở độ cao trên 5m nằm trong khoảng thời gian từ 1,61 – 0,43 = 1,18s.

Vậy trong khoảng thời gian 1,18s thì bóng ở độ cao trên 5m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP