Câu hỏi:

12/07/2024 1,810

Có ba trạm quan sát A, B, C trong đó trạm quan sát C ở giữa hồ.

Media VietJack

Người ta muốn đo khoảng cách từ A và từ B đến C. Do không thể đo trực tiếp được các khoảng cách trên nên người ta làm như sau (Hình 55):

- Đo góc BAC được 60o, đo góc ABC được 45o;

- Kẻ tia Ax sao cho BAx^=60°, kẻ tia By sao cho ABy^=45°, xác định giao điểm D của hai tia đó;

- Đo khoảng cách AD và BD. Ta có AC = AD và BC = BD.

Tại sao lại có hai đẳng thức trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ΔABC ΔABD có:

BAC^=BAD^=60°.

AB chung.

ABC^=ABD^=45°.

Suy ra ΔABC=ΔABD (g .c .g).

Do đó AC = AD (2 cạnh tương ứng) và BC = BD (2 cạnh tương ứng).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tam giác ABC và A’B’C’ thỏa mãn: AB = A’B’, A^=A'^, C^=C'^. Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?

Xem đáp án » 13/07/2024 16,524

Câu 2:

Cho tam giác ABC có B^>C^. Tia phân giác góc BAC cắt cạnh BC tại điểm D.

a) Chứng minh ADB^<ADC^.

b) Kẻ tia Dx nằm trong góc ADC sao cho ADx^=ADB^. Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh: ΔABD=ΔAED, AB < AC.

Xem đáp án » 13/07/2024 14,157

Câu 3:

Cho Hình 67 có AHD^=BKC^=90°, DH = CK, DAB^=CBA^. Chứng minh AD = BC.

Media VietJack

Xem đáp án » 13/07/2024 13,758

Câu 4:

Cho Hình 66 có N^=P^=90°,PMQ^=NQM^. Chứng minh MN = QP, MP = QN.

Media VietJack

Xem đáp án » 13/07/2024 10,442

Câu 5:

Cho Hình 65 có AM = BN, A^=B^.

Media VietJack

Chứng minh: OA = OB, OM = ON.

Xem đáp án » 13/07/2024 9,816

Câu 6:

Cho ΔABC=ΔMNP. Tia phân giác của góc BAC và NMP lần lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ.

Xem đáp án » 13/07/2024 6,872

Câu 7:

Giải thích bài toán ở phần mở đầu.

Xem đáp án » 13/07/2024 2,245
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua