Câu hỏi:

13/07/2024 1,161

Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm ba đường trung trực của tam giác ABC. Chứng minh tam giác ABC đều.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi M, N, P lần lượt là chân đường cao kẻ từ I đến BC, CA, AB.

Do I là giao điểm ba đường phân giác của tam giác ABC nên IM = IN = IP.

Do I là giao điểm ba đường trung trực của tam giác ABC nên I nằm trên đường trung trực của các cạnh BC, CA, AB.

Suy ra đường thẳng qua I, vuông góc với BC, CA, AB lần lượt là đường trung trực của các cạnh BC, CA, AB.

Do đó M, N, P lần lượt là đường trung trực của các cạnh BC, CA, AB.

Suy ra M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB.

Do AI là đường phân giác của BAC^ nên BAI^=CAI^.

Xét ΔPAI vuông tại P và ΔNAI vuông tại N có:

AI chung.

PAI^=NAI^ (chứng minh trên).

Suy ra ΔPAI=ΔNAI (cạnh huyền - góc nhọn).

Do đó PA = NA (2 cạnh tương ứng).

Mà P là trung điểm của AB nên PA = 12BA; N là trung điểm của CA nên NA = 12CA.

Suy ra AB = CA.

Thực hiện tương tự ta thu được BA = BC.

Do đó AB = BC = CA.

Tam giác ABC có AB = BC = CA nên tam giác ABC đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Cách vẽ:

- Vẽ tam giác ABC nhọn.

- Vẽ ba đường trung trực của ba cạnh AB, BC, AC. Ba đường trung trực này giao nhau tại điểm O (điểm O nằm trong tam giác ABC).

Media VietJack

b) Cách vẽ:

- Vẽ tam giác ABC vuông tại A.

- Vẽ ba đường trung trực của ba cạnh AB, BC, AC. Ba đường trung trực này giao nhau tại điểm O (điểm O là trung điểm của đoạn BC).

Media VietJack

c) Cách vẽ:

- Vẽ tam giác ABC tù.

- Vẽ ba đường trung trực của ba cạnh AB, BC, AC. Ba đường trung trực này giao nhau tại điểm O (điểm O nằm ngoài tam giác ABC).

Media VietJack

Lời giải

Media VietJack

a) Đường trung trực của hai cạnh AB và AC cắt nhau tại điểm O nằm trong tam giác nên tam giác ABC nhọn và O là giao điểm của ba đường trung trực của tam giác ABC.

Do đó điểm O nằm trên đường trung trực của đoạn thẳng BC.

Lại có M là trung điểm của BC nên OM là đường trung trực của đoạn thẳng BC.

Do đó OM  BC.

b) Do OM  BC nên ΔOMB ΔOMC vuông tại M.

Xét ΔOMB vuông tại M và ΔOMC vuông tại M có:

OM chung.

MB = MC (theo giả thiết).

Do đó ΔOMB=ΔOMC (hai cạnh góc vuông).

Suy ra MOB^=MOC^ (hai góc tương ứng).

Vậy MOB^=MOC^

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay