Câu hỏi:

13/07/2024 1,664

Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:

a) Tam giác ABC nhọn;

b) Tam giác ABC vuông tại A;

c) Tam giác ABC có góc A tù.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Cách vẽ:

- Vẽ tam giác ABC nhọn.

- Từ ba đỉnh A, B, C của tam giác ta vẽ ba đường cao. Ba đường cao này cắt nhau tại điểm H. Khi đó H là trực tâm của tam giác ABC (H nằm trong tam giác ABC).

Ta có hình vẽ sau:

Media VietJack

Ta thấy H nằm trong tam giác ABC.

b) Cách vẽ:

- Vẽ tam giác ABC vuông tại A.

- Từ ba đỉnh A, B, C của tam giác ta vẽ ba đường cao.

Trong tam giác ABC có AB AC, AC AB.

Do đó AB và AC là hai đường cao của tam giác ABC.

Mà AB cắt AC tại A nên A là trực tâm của tam giác ABC.

Do đó A trùng H.

Ta có hình vẽ sau:

Media VietJack

Ta thấy trong tam giác ABC: AB  AC, AC  AB.

Do đó AB và AC là hai đường cao của tam giác ABC.

Mà AB cắt AC tại A nên A là trực tâm của tam giác ABC.

Do đó A trùng H.

c) Cách vẽ:

- Vẽ tam giác ABC có góc A tù.

- Từ ba đỉnh A, B, C của tam giác ta vẽ ba đường cao. Ba đường cao này cắt nhau tại điểm H. Khi đó H là trực tâm của tam giác ABC (H nằm ngoài tam giác ABC).

 Ta có hình vẽ sau:

Media VietJack

Ta thấy H nằm ngoài tam giác ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có H là trực tâm, H không trùng với đỉnh nào của tam giác. Nêu một tính chất của cặp đường thẳng:

a) AH và BC;

b) BH và CA;

c) CH và AB.

Xem đáp án » 13/07/2024 4,370

Câu 2:

Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:

a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;

b) Nếu tam giác ABC có hai điểm H, I trùng nhau thì tam giác ABC là tam giác đều.

Xem đáp án » 13/07/2024 3,752

Câu 3:

Cho tam giác nhọn ABC và điểm D nằm trong tam giác. Chứng minh rằng nếu DA vuông góc với BC và DB vuông góc với CA thì DC vuông góc với AB.

Xem đáp án » 13/07/2024 2,997

Câu 4:

Trong Hình 139, cho biết AB // CD, AD // BC; H, K lần lượt là trực tâm các tam giác ABC và ACD. Chứng minh AK // CH và AH // CK.

Media VietJack

Xem đáp án » 13/07/2024 2,901

Câu 5:

Cho tam giác nhọn ABC. Hai đường cao BE và CF cắt nhau tại H, HCA^=25°. Tính BAC^ HBA^.

Xem đáp án » 13/07/2024 1,539

Câu 6:

Cho tam giác ABC vuông tại A. Hãy đọc tên đường cao đi qua B, đường cao đi qua C.

Xem đáp án » 13/07/2024 1,090

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store