Câu hỏi:

11/07/2024 3,911

Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144).

Media VietJack

Chứng minh:

a) ΔOMA=ΔOMB và tia MO là tia phân giác của góc NMP;

b) O là giao điểm ba đường phân giác của tam giác MNP.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Media VietJack

Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo tính chất đường xiên và đường vuông góc kẻ từ một điểm đến một đường thẳng, ta thấy DA nhỏ nhất khi D là chân đường vuông góc kẻ từ A đến BC.

Ta xác định điểm D như sau:

Bước 1. Kẻ hai đường cao xuất phát từ B và C của tam giác ABC.

Bước 2. Gọi H là giao điểm của hai đường cao xuất phát từ B và C của tam giác ABC.

Bước 3. Từ H kẻ đường vuông góc với BC, đường vuông góc này cắt BC tại một điểm.

Điểm đó chính là điểm D cần tìm.

Ta có hình vẽ sau:

Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP