Câu hỏi:
11/07/2024 3,321Bạn Hoa vẽ tam giác ABC lên tờ giấy sau đó cắt một phần tam giác ở phía góc A (Hình 145). Bạn Hoa đố bạn Hùng: Không vẽ điểm A, làm thế nào tìm được điểm D trên đường thẳng BC sao cho khoảng cách từ D đến điểm A là nhỏ nhất? Em hãy giúp bạn Hùng tìm cách vẽ điểm D và giải thích cách làm của mình.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Theo tính chất đường xiên và đường vuông góc kẻ từ một điểm đến một đường thẳng, ta thấy DA nhỏ nhất khi D là chân đường vuông góc kẻ từ A đến BC.
Ta xác định điểm D như sau:
Bước 1. Kẻ hai đường cao xuất phát từ B và C của tam giác ABC.
Bước 2. Gọi H là giao điểm của hai đường cao xuất phát từ B và C của tam giác ABC.
Bước 3. Từ H kẻ đường vuông góc với BC, đường vuông góc này cắt BC tại một điểm.
Điểm đó chính là điểm D cần tìm.
Ta có hình vẽ sau:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho Hình 142 có O là trung điểm của đoạn thẳng AB và O nằm giữa hai điểm M, N.
Chứng minh:
a) Nếu OM = ON thì AM // BN.
b) Nếu AM // BN thì OM = ON.
Câu 2:
Cho tam giác ABC cân tại A có
. Hai đường cao BD và CE cắt nhau tại H.
a) Tính số đo các góc còn lại của tam giác ABC.
b) Chứng minh BD = CE.
c) Chứng minh tia AH là tia phân giác của góc BAC.
Câu 4:
Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144).
Chứng minh:
a) và tia MO là tia phân giác của góc NMP;
b) O là giao điểm ba đường phân giác của tam giác MNP.
Câu 5:
Cho tam giác MNP có MN = 1 dm, NP = 2 dm, MP = x dm với x {1; 2; 3; 4}. Khi đó, x nhận giá trị nào?
Câu 6:
Cho tam giác nhọn MNP có trực tâm H. Khi đó, góc HMN bằng góc nào sau đây?
về câu hỏi!