Câu hỏi:

04/07/2022 4,549

Cho đường thẳng Δ có phương trình tham số

\(\left\{ \begin{array}{l}x = 1 - 2t\\y = - 2 + t\end{array} \right.\).

a) Chỉ ra tọa độ của hai điểm thuộc đường thẳng Δ.

b) Điểm nào trong các điểm C(– 1; – 1), D(1; 3) thuộc đường thẳng Δ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Phương trình tham số của đường thẳng ∆ là \(\left\{ \begin{array}{l}x = 1 - 2t\\y = - 2 + t\end{array} \right.\).

+ Ứng với t = 0 ta có \(\left\{ \begin{array}{l}x = 1 - 2.0 = 1\\y = - 2 + 0 = - 2\end{array} \right.\).

Điểm A(1; – 2) thuộc đường thẳng ∆.

+ Ứng với t = 1 ta có

Điểm B(– 1; – 1) thuộc đường thẳng ∆.

Chú ý: Ta chỉ cần lấy một số thực t bất kì thay vào phương trình tham số, ta sẽ được tọa độ 1 điểm thuộc đường thẳng ∆.

b) Theo câu a) điểm B(– 1; – 1) thuộc đường thẳng Δ ứng với t = 1, khi đó C ≡ B.

Vậy điểm C(– 1; – 1) thuộc đường thẳng ∆.

Thay tọa độ điểm D(1; 3) vào đường thẳng Δ ta được:

\(\left\{ \begin{array}{l}1 = 1 - 2t\\3 = - 2 + t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0\\t = 5\end{array} \right.\) (vô nghiệm)

Vậy điểm D(1; 3) không thuộc đường thẳng ∆.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đường thẳng ∆ đi qua điểm A(– 1; 2) nhận \(\overrightarrow n = \left( {3;\,2} \right)\) làm vectơ pháp tuyến.

Do đó, phương trình tổng quát của đường thẳng ∆ là: 3(x – (– 1)) + 2(y – 2) = 0 hay 3x + 2y – 1 = 0.

Lời giải

Hướng dẫn giải

Đường thẳng d có phương trình tổng quát là: x – 2y – 5 = 0.

Do đó d có 1 vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\, - 2} \right)\), suy ra d có 1 vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,\,1} \right)\)

Cho y = 0, thay vào phương trình tổng quát của d ta được: x – 2 . 0 – 5 = 0 x = 5.

Do đó, điểm A(5; 0) thuộc d.

Vậy phương trình tham số của đường thẳng d là \(\left\{ \begin{array}{l}x = 5 + 2t\\y = t\end{array} \right.\) (t là tham số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay