Câu hỏi:

11/07/2024 761

Cho đường thẳng ∆ có phương trình tổng quát ax + by + c = 0 (a hoặc b khác 0). Nêu nhận xét về vị trí tương đối của đường thẳng ∆ với các trục tọa độ trong mỗi trường hợp sau:

a) b = 0 và a ≠ 0.

b) b ≠ 0 và a = 0.

c) b ≠ 0 và a ≠ 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Nếu b = 0 và a ≠ 0 thì phương trình đường thẳng ∆ trở thành ax + c = 0.

Khi đó đường thẳng ∆ song song hoặc trùng với trục Oy và cắt trục Ox tại điểm \(\left( { - \frac{c}{a};\,0} \right)\)

Media VietJack

b) Nếu b ≠ 0 và a = 0 thì phương trình đường thẳng ∆ trở thành by + c = 0.

Khi đó đường thẳng ∆ song song hoặc trùng với trục Ox và cắt trục Oy tại điểm \(\left( {0;\, - \frac{c}{b}} \right)\)

Media VietJack

c) Nếu b ≠ 0 và a ≠ 0 thì phương trình đường thẳng ∆ có thể viết thành

\(y = - \frac{a}{b}x - \frac{c}{b}\).

Khi đó, đường thẳng ∆ là đồ thị hàm số bậc nhất \(y = - \frac{a}{b}x - \frac{c}{b}\) với hệ số góc \(k = - \frac{a}{b}\).

Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đường thẳng ∆ đi qua điểm A(– 1; 2) nhận \(\overrightarrow n = \left( {3;\,2} \right)\) làm vectơ pháp tuyến.

Do đó, phương trình tổng quát của đường thẳng ∆ là: 3(x – (– 1)) + 2(y – 2) = 0 hay 3x + 2y – 1 = 0.

Lời giải

Hướng dẫn giải

Đường thẳng d có phương trình tổng quát là: x – 2y – 5 = 0.

Do đó d có 1 vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\, - 2} \right)\), suy ra d có 1 vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,\,1} \right)\)

Cho y = 0, thay vào phương trình tổng quát của d ta được: x – 2 . 0 – 5 = 0 x = 5.

Do đó, điểm A(5; 0) thuộc d.

Vậy phương trình tham số của đường thẳng d là \(\left\{ \begin{array}{l}x = 5 + 2t\\y = t\end{array} \right.\) (t là tham số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay