Câu hỏi:

04/07/2022 4,044

Cho tam giác ABC, biết A(1; 3); B(– 1; – 1); C(5; – 3). Lập phương trình tổng quát của:

Ba đường thẳng AB, BC, AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

* Ta có: \(\overrightarrow {AB} = \left( { - 2;\, - 4} \right)\).

Do đó đường thẳng AB nhận \(\overrightarrow {{u_{AB}}} = - \frac{1}{2}\overrightarrow {AB} = - \frac{1}{2}\left( { - 2;--\,4} \right) = \left( {1;\,2} \right)\) làm một vectơ chỉ phương.

Suy ra đường thẳng AB có một vectơ pháp tuyến là \(\overrightarrow {{n_{AB}}} = \left( {2;\, - 1} \right)\).

Vậy phương trình tổng quát của đường thẳng AB là 2(x – 1) – 1(y – 3) = 0 hay 2x – y + 1 = 0.

* Ta có: \(\overrightarrow {BC} = \left( {6;\, - 2} \right)\).

Do đó đường thẳng BC nhận \(\overrightarrow {{u_{BC}}} = \frac{1}{2}\overrightarrow {BC} = \frac{1}{2}\left( {6;--\,2} \right) = \left( {3;\, - 1} \right)\) làm một vectơ chỉ phương.

Suy ra đường thẳng BC có một vectơ pháp tuyến là \(\overrightarrow {{n_{BC}}} = \left( {1;\,\,\,3} \right)\).

Vậy phương trình tổng quát của đường thẳng BC là 1(x + 1) + 3(y + 1) = 0 hay x + 3y + 4 = 0.

* Ta có: \(\overrightarrow {AC} = \left( {4;\, - 6} \right)\).

Do đó đường thẳng AC nhận \(\overrightarrow {{u_{AC}}} = \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}\left( {4;--\,6} \right) = \left( {2;\, - 3} \right)\) làm một vectơ chỉ phương.

Suy ra đường thẳng AC có một vectơ pháp tuyến là \(\overrightarrow {{n_{AC}}} = \left( {3;\,\,2} \right)\).

Vậy phương trình tổng quát của đường thẳng AC là 3(x – 1) + 2(y – 3) = 0 hay 2x + 2y – 9 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đường thẳng ∆ đi qua điểm A(– 1; 2) nhận \(\overrightarrow n = \left( {3;\,2} \right)\) làm vectơ pháp tuyến.

Do đó, phương trình tổng quát của đường thẳng ∆ là: 3(x – (– 1)) + 2(y – 2) = 0 hay 3x + 2y – 1 = 0.

Lời giải

Hướng dẫn giải

Đường thẳng d có phương trình tổng quát là: x – 2y – 5 = 0.

Do đó d có 1 vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\, - 2} \right)\), suy ra d có 1 vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,\,1} \right)\)

Cho y = 0, thay vào phương trình tổng quát của d ta được: x – 2 . 0 – 5 = 0 x = 5.

Do đó, điểm A(5; 0) thuộc d.

Vậy phương trình tham số của đường thẳng d là \(\left\{ \begin{array}{l}x = 5 + 2t\\y = t\end{array} \right.\) (t là tham số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay