Câu hỏi:

04/07/2022 847

Cho tam giác ABC, biết A(1; 3); B(– 1; – 1); C(5; – 3). Lập phương trình tổng quát của:

Ba đường thẳng AB, BC, AC.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

* Ta có: \(\overrightarrow {AB} = \left( { - 2;\, - 4} \right)\).

Do đó đường thẳng AB nhận \(\overrightarrow {{u_{AB}}} = - \frac{1}{2}\overrightarrow {AB} = - \frac{1}{2}\left( { - 2;--\,4} \right) = \left( {1;\,2} \right)\) làm một vectơ chỉ phương.

Suy ra đường thẳng AB có một vectơ pháp tuyến là \(\overrightarrow {{n_{AB}}} = \left( {2;\, - 1} \right)\).

Vậy phương trình tổng quát của đường thẳng AB là 2(x – 1) – 1(y – 3) = 0 hay 2x – y + 1 = 0.

* Ta có: \(\overrightarrow {BC} = \left( {6;\, - 2} \right)\).

Do đó đường thẳng BC nhận \(\overrightarrow {{u_{BC}}} = \frac{1}{2}\overrightarrow {BC} = \frac{1}{2}\left( {6;--\,2} \right) = \left( {3;\, - 1} \right)\) làm một vectơ chỉ phương.

Suy ra đường thẳng BC có một vectơ pháp tuyến là \(\overrightarrow {{n_{BC}}} = \left( {1;\,\,\,3} \right)\).

Vậy phương trình tổng quát của đường thẳng BC là 1(x + 1) + 3(y + 1) = 0 hay x + 3y + 4 = 0.

* Ta có: \(\overrightarrow {AC} = \left( {4;\, - 6} \right)\).

Do đó đường thẳng AC nhận \(\overrightarrow {{u_{AC}}} = \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}\left( {4;--\,6} \right) = \left( {2;\, - 3} \right)\) làm một vectơ chỉ phương.

Suy ra đường thẳng AC có một vectơ pháp tuyến là \(\overrightarrow {{n_{AC}}} = \left( {3;\,\,2} \right)\).

Vậy phương trình tổng quát của đường thẳng AC là 3(x – 1) + 2(y – 3) = 0 hay 2x + 2y – 9 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường thẳng d có phương trình tổng quát là: x – 2y – 5 = 0.

Lập phương trình tham số của đường thẳng d.

Xem đáp án » 11/07/2024 15,214

Câu 2:

B. Bài tập

Lập phương trình tổng quát của đường thẳng Δ đi qua điểm A(– 1; 2) và 

Có vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,2} \right)\).

Xem đáp án » 11/07/2024 11,094

Câu 3:

Cho đường thẳng d có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 1 - 3t\\y = 2 + 2t\end{array} \right.\).

Lập phương trình tổng quát của đường thẳng d.

Xem đáp án » 11/07/2024 9,125

Câu 4:

Tìm tọa độ giao điểm của đường thẳng d lần lượt với các trục Ox, Oy.

Xem đáp án » 13/07/2024 7,465

Câu 5:

Đường cao AH và đường trung tuyến AM của tam giác ABC.

Xem đáp án » 13/07/2024 5,653

Câu 6:

Tìm tọa độ điểm M thuộc d sao cho OM = 5 với O là gốc tọa độ.

Xem đáp án » 13/07/2024 5,267

Câu 7:

Để tham gia một phòng tập thể dục, người tập phải trả một khoản phí tham gia ban đầu và phí sử dụng phòng tập. Đường thẳng Δ ở Hình 38 biểu thị tổng chi phí (đơn vị: triệu đồng) để tham gia một phòng tập thể dục theo thời gian tập của một người (đơn vị: tháng).

Media VietJack

Viết phương trình của đường thẳng Δ.

Xem đáp án » 11/07/2024 5,149

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store