Câu hỏi:
04/07/2022 12,673Quảng cáo
Trả lời:
Hướng dẫn giải
Đường thẳng d1 có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;\, - 1} \right)\).
Đường thẳng d2 có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;\, - 3} \right)\).
Do đó, cos(d1, d2) = \(\left| {\cos \left( {\overrightarrow {{n_1}} ,\,\overrightarrow {{n_2}} } \right)\,} \right| = \frac{{\left| {\overrightarrow {{n_1}} \,.\,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|\,.\left| {\overrightarrow {{n_2}} } \right|}}\)\( = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \,.\,\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\).
Vậy (d1, d2) = 45°.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi d là đường thẳng đi qua B và cách đều A và C.
Do d đi qua B(– 1; 2) nên phương trình đường thẳng d có dạng a(x + 1) + b(y – 2) = 0 hay ax + by + a – 2b = 0 (với a và b không đồng thời bằng 0).
Vì d cách đều A và C nên d(A, d) = d(C, d).
\( \Leftrightarrow \frac{{\left| {2a + 4b + a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {3a - b + a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
\( \Leftrightarrow \left| {3a + 2b} \right| = \left| {4a - 3b} \right|\)
Trường hợp 1: 3a + 2b = 4a – 3b ⇔ a = 5b.
Chọn b = 1, a = 5 . 1 = 5, ta có phương trình đường thẳng d là 5x + y + 5 – 2 = 0 hay 5x + y + 3 = 0.
Trường hợp 2: 3a + 2b = – (4a – 3b) ⇔ 7a = b.
Chọn a = 1, b = 7 . 1 = 7, ta có phương trình đường thẳng d là x + 7y + 1 – 2 . 7 = 0 hay x + 7y – 13 = 0.
Vậy phương trình đường thẳng cần lập là 5x + y + 3 = 0 hoặc x + 7y – 13 = 0.
Lưu ý: Do vectơ \(\overrightarrow n = \left( {a;\,b} \right)\) là vectơ pháp tuyến của đường thẳng d, mà một đường thẳng có vô số vectơ pháp tuyến, nên khi ta có hệ thức liên hệ giữa a và b thì ta có thể chọn a rồi suy ra b hoặc ngược lại.
Lời giải
Hướng dẫn giải
Đường thẳng ∆1 có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {m;\, - 1} \right)\).
Đường thẳng ∆2 có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {2;\, - 1} \right)\).
Ta có: ∆1 ⊥ ∆2 \( \Leftrightarrow \overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \Leftrightarrow \overrightarrow {{n_1}} \,.\,\overrightarrow {{n_2}} = 0\)⇔ m . 2 + (– 1) . (– 1) = 0 ⇔ m = \( - \frac{1}{2}\).
Vậy m = \( - \frac{1}{2}\) thì hai đường thẳng ∆1 và ∆2 vuông góc với nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.