Câu hỏi:

11/07/2024 9,068

Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi d là đường thẳng đi qua B và cách đều A và C.

Do d đi qua B(– 1; 2) nên phương trình đường thẳng d có dạng a(x + 1) + b(y – 2) = 0 hay ax + by + a – 2b = 0 (với a và b không đồng thời bằng 0).

Vì d cách đều A và C nên d(A, d) = d(C, d).

\( \Leftrightarrow \frac{{\left| {2a + 4b + a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {3a - b + a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

\( \Leftrightarrow \left| {3a + 2b} \right| = \left| {4a - 3b} \right|\)

Trường hợp 1: 3a + 2b = 4a – 3b a = 5b.

Chọn b = 1, a = 5 . 1 = 5, ta có phương trình đường thẳng d là 5x + y + 5 – 2 = 0 hay 5x + y + 3 = 0.

Trường hợp 2: 3a + 2b = – (4a – 3b) 7a = b.

Chọn a = 1, b = 7 . 1 = 7, ta có phương trình đường thẳng d là x + 7y + 1 – 2 . 7 = 0 hay x + 7y – 13 = 0.

Vậy phương trình đường thẳng cần lập là 5x + y + 3 = 0 hoặc x + 7y – 13 = 0.

Lưu ý: Do vectơ \(\overrightarrow n = \left( {a;\,b} \right)\) là vectơ pháp tuyến của đường thẳng d, mà một đường thẳng có vô số vectơ pháp tuyến, nên khi ta có hệ thức liên hệ giữa a và b thì ta có thể chọn a rồi suy ra b hoặc ngược lại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều  khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có tọa độ được xác định bởi công thức: \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - \,4 + 25t\end{array} \right.\), vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t).

Tính côsin góc giữa hai đường đi của hai tàu A và B.

Xem đáp án » 04/07/2022 7,604

Câu 2:

Tính số đo góc giữa hai đường thẳng d1: 2x – y + 5 = 0 và d2: x – 3y + 3 = 0.

Xem đáp án » 04/07/2022 6,236

Câu 3:

B. Bài tập

Xét vị trí tương đối của mỗi cặp đường thẳng sau:

d1: 3x + 2y – 5 = 0 và d2: x – 4y + 1 = 0;

Xem đáp án » 04/07/2022 3,714

Câu 4:

Với giá trị nào của tham số m thì hai đường thẳng sau đây vuông góc?

Δ1: mx – y + 1 = 0 và Δ2: 2x – y + 3 = 0.

Xem đáp án » 11/07/2024 3,688

Câu 5:

Cho ba điểm A(2; – 1), B(1; 2) và C(4; – 2). Tính số đo góc BAC và góc giữa hai đường thẳng AB, AC.

Xem đáp án » 11/07/2024 3,146

Câu 6:

Tính khoảng cách từ một điểm đến một đường thẳng trong mỗi trường hợp sau:

A(1; – 2) và Δ1: 3x – y + 4 = 0;

Xem đáp án » 11/07/2024 2,166

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn