Câu hỏi:

12/07/2024 1,571

Với hai tam giác ABC và MNP bất kì, sao cho ∆ABC = ∆MNP, những câu nào dưới đây đúng?

a) AB = MN, AC = MP, BC = NP.

b) \(\widehat A = \widehat M,\,\,\,\widehat B = \widehat N,\,\,\,\widehat C = \widehat P.\)

c) BA = NM, CA = PM, CB = PN.

d) \(\widehat B = \widehat P,\,\,\,\widehat C = \widehat M,\,\,\,\widehat A = \widehat N.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Khi ∆ABC = ∆MNP ta có các cặp cạnh bằng nhau và các cặp góc bằng nhau là:

\[\left\{ \begin{array}{l}\widehat A = \widehat M,\,\,\,\widehat B = \widehat N,\,\,\,\widehat C = \widehat P\\AB = MN,\,\,\,\,BC = NP,\,\,AC = MP\end{array} \right.\].

Từ đây ta rút ra được các khẳng định đúng là a, b, c.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng \(\widehat {AEB} = \widehat {ADC}\).

Media VietJack

Xem đáp án » 12/07/2024 3,374

Câu 2:

Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).

Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.

Media VietJack

Xem đáp án » 12/07/2024 1,693

Câu 3:

Khi viết ∆ABC = ∆MNP thì góc nào tương ứng với góc PNM và cạnh nào tương ứng với cạnh NP. Hãy viết các cặp cạnh bằng nhau và các cặp góc bằng nhau của hai tam giác ABC và MNP đã cho.

Xem đáp án » 12/07/2024 1,531

Câu 4:

Cho Hình 4.15, chứng minh rằng ∆ABC = ∆DCB; ∆ADB = ∆DAC.

Media VietJack

Xem đáp án » 12/07/2024 1,398

Câu 5:

Với hai tam giác ABC và DEF bất kì, sao cho ∆ABC = ∆DEF, những câu nào dưới đây đúng?

a) ∆BCA = ∆FED.

b) ∆CAB = ∆EDF.

c) ∆BAC = ∆EDF.

d) ∆CBA = ∆FDE.

Xem đáp án » 12/07/2024 1,201

Câu 6:

Cho Hình 4.17, biết rằng AD = BC, AC = BD và \(\widehat {ABD} = 30^\circ \), hãy tính số đo của góc DEC.

Media VietJack

Xem đáp án » 12/07/2024 1,199

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store