Câu hỏi:
12/07/2024 1,318Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).
Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Xét ∆ABD và ∆DCA có:
AB = CD (do ABCD là hình bình hành)
AD chung
BD = AC (giả thiết hai đường chéo bằng nhau)
Do đó, ∆ABD = ∆DCA (c – c – c).
Xét ∆ADC và ∆BCD có:
AD = BC (do ABCD là hình bình hành)
DC chung
AC = BD (giả thiết hai đường chéo bằng nhau)
Do đó, ∆ADC = ∆BCD (c – c – c).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng \(\widehat {AEB} = \widehat {ADC}\).
Câu 2:
Với hai tam giác ABC và MNP bất kì, sao cho ∆ABC = ∆MNP, những câu nào dưới đây đúng?
a) AB = MN, AC = MP, BC = NP.
b) \(\widehat A = \widehat M,\,\,\,\widehat B = \widehat N,\,\,\,\widehat C = \widehat P.\)
c) BA = NM, CA = PM, CB = PN.
d) \(\widehat B = \widehat P,\,\,\,\widehat C = \widehat M,\,\,\,\widehat A = \widehat N.\)
Câu 3:
Câu 5:
Cho Hình 4.17, biết rằng AD = BC, AC = BD và \(\widehat {ABD} = 30^\circ \), hãy tính số đo của góc DEC.
Câu 6:
Với hai tam giác ABC và DEF bất kì, sao cho ∆ABC = ∆DEF, những câu nào dưới đây đúng?
a) ∆BCA = ∆FED.
b) ∆CAB = ∆EDF.
c) ∆BAC = ∆EDF.
d) ∆CBA = ∆FDE.
về câu hỏi!