Câu hỏi:

26/07/2022 1,592

(C) đi qua ba điểm A(– 3; 2), B(– 2; – 5) và D(5; 2).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đường tròn (C) đi qua ba điểm A(– 3; 2), B(– 2; – 5) và D(5; 2).

 Giả sử tâm của đường tròn là điểm I(a; b).

Ta có IA = IB = ID IA2 = IB2 = ID2.

Vì IA2 = IB2, IB2 = ID2 nên

\(\left\{ \begin{array}{l}{\left( { - 3 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\\{\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} + 6a + 9 + {b^2} - 4b + 4 = {a^2} + 4a + 4 + {b^2} + 10b + 25\\{a^2} + 4a + 4 + {b^2} + 10b + 25 = {a^2} - 10a + 25 + {b^2} - 4b + 4\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2a - 14b = 16\\14a + 14b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\end{array} \right.\)

Đường tròn tâm I(1; – 1) bán kính R = ID = \(\sqrt {{{\left( {5 - a} \right)}^2} + {{\left( {2 - b} \right)}^2}} \)\( = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {2 + 1} \right)}^2}} = 5\)

Phương trình đường tròn (C) là \({\left( {x - 1} \right)^2} + {\left( {y - \left( { - 1} \right)} \right)^2} = {5^2}\).

Vậy phương trình đường tròn (C) là \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 25\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Lúc 14 giờ 30 phút máy bay đã bay được: 14 giờ 30 phút – 14 giờ = 30 phút = 0,5 giờ.

Vị trí của máy bay tại thời điểm t = 0,5 giờ là \(\left\{ \begin{array}{l}x = \frac{{1600}}{3} - \frac{{1400}}{3}.0,5 = 300\\y = \frac{{1900}}{3} - \frac{{1400}}{3}.0,5 = 400\end{array} \right.\).

Vậy vị trí của máy bay lúc 14 giờ 30 phút ở tại điểm có tọa độ E(300; 400).

 Ta có: \(\overrightarrow {OE} = \left( {300;\,400} \right)\) nên \(OE = \sqrt {{{300}^2} + {{400}^2}} = 500\), hay khoảng cách từ đài kiểm soát không lưu O đến vị trí E của máy bay lúc 14 giờ 30 phút là 500 km.

Vậy thời điểm này máy bay đã xuất hiện trên màn hình ra đa.

Lời giải

Hướng dẫn giải:

Máy bay bay trên đường thẳng d có phương trình \(\left\{ \begin{array}{l}x = \frac{{1600}}{3} - \frac{{1400}}{3}t\\y = \frac{{1900}}{3} - \frac{{1400}}{3}t\end{array} \right.\).

Gọi H là hình chiếu của O đến đường thẳng d. Khi đó OH là khoảng cách ngắn nhất từ O đến H hay chính là tại vị trí H máy bay bay gần đài kiểm soát không lưu nhất.

Ta có H thuộc d nên tọa độ \(H\left( {\frac{{1600}}{3} - \frac{{1400}}{3}t;\frac{{1900}}{3} - \frac{{1400}}{3}t} \right)\).

Khi đó, \[\overrightarrow {OH} = \left( {\frac{{1600}}{3} - \frac{{1400}}{3}t;\frac{{1900}}{3} - \frac{{1400}}{3}t} \right)\].

Lại có đường thẳng d có vectơ chỉ phương là \(\overrightarrow {{u_d}} = - \frac{3}{{1400}}\left( { - \frac{{1400}}{3}; - \frac{{1400}}{3}} \right) = \left( {1;\,\,1} \right)\).

Vì OH d nên \(\overrightarrow {OH} .\overrightarrow {{u_d}} = 0 \Leftrightarrow \left( {\frac{{1600}}{3} - \frac{{1400}}{3}t} \right).1 + \left( {\frac{{1900}}{3} - \frac{{1400}}{3}t} \right).1 = 0\)\( \Leftrightarrow t = \frac{5}{4}\).

Khi đó H(– 50; 50).

Do đó, OH = \(50\sqrt 2 \).

Ta có: t = \(\frac{5}{4}\) giờ = 1 giờ 15 phút.

Vậy máy bay bay gần đài kiểm soát không lưu nhất lúc: 14 giờ + 1 giờ 15 phút = 15 giờ 15 phút và khoảng cách giữa máy bay và đài kiểm soát không lưu lúc này là \(50\sqrt 2 \) km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay