Câu hỏi:

13/07/2024 2,883

Cho hàm số y = f(x) có đồ thị ở Hình 15.

Media VietJack

Trong các phát biểu sau, phát biểu nào sai?

A. f(x) < 0 khi và chỉ khi x (1 ; 3).

B. f(x) ≤ 0 khi và chỉ khi x (– ∞; 1][3; +∞).

C. f(x) > 0 khi và chỉ khi x (1 ; 3).

D. f(x) ≥ 0 khi và chỉ khi x [1 ; 3].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là A

Dựa vào đồ thị hàm số ta nhận thấy:

Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ lần lượt là x = 1 và x = 3. Suy ra f(x) = 0 tại x = 1 hoặc x = 3.

Đồ thị hàm số nằm phía trên trục hoành khi x (1; 3). Suy ra f(x) > 0 khi x (1; 3).

Đồ thị hàm số nằm phía dưới trục hoành khi x (– ∞; 1) (3; +∞). Suy ra f(x) < 0 khi x (– ∞; 1) (3; +∞).

Vậy đáp án A sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là B

Theo định lí dấu của tam thức bậc hai ta có:

Tam thức bậc hai f(x) < 0 với mọi x khi và chỉ khi a < 0 và ∆ < 0.

Tam thức bậc hai f(x) ≤ 0 với mọi x khi và chỉ khi a < 0 và ∆ ≤ 0.

Tam thức bậc hai f(x) > 0 với mọi x khi và chỉ khi a > 0 và ∆ < 0.

Tam thức bậc hai f(x) ≥ 0 với mọi x khi và chỉ khi a > 0 và ∆ ≤ 0.

Vậy đáp án đúng là B

Lời giải

Lời giải

Tam thức f(x) = – x2 – 2x + m – 12 không dương với mọi x ℝ nghĩa là f(x) ≤ 0 với mọi x ℝ.

Xét tam thức f(x) = – x2 – 2x + m – 12, có a = – 1 < 0 và ∆ = (– 2)2 – 4.(– 1)(m – 12) = 4m – 44.

Vì a = – 1 < 0 nên để f(x) ≤ 0 với mọi x ∆ ≤ 0

4m – 44 ≤ 0

4m ≤ 44

m ≤ 11

Vậy với m ≤ 11 thì tam thức f(x) = – x2 – 2x + m – 12 không dương với mọi x ℝ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP