Câu hỏi:
13/07/2024 1,942Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
Tam thức f(x) = – x2 – 2x + m – 12 không dương với mọi x ∈ ℝ nghĩa là f(x) ≤ 0 với mọi x ∈ ℝ.
Xét tam thức f(x) = – x2 – 2x + m – 12, có a = – 1 < 0 và ∆ = (– 2)2 – 4.(– 1)(m – 12) = 4m – 44.
Vì a = – 1 < 0 nên để f(x) ≤ 0 với mọi x ∈ ℝ ⇔ ∆ ≤ 0
⇔ 4m – 44 ≤ 0
⇔ 4m ≤ 44
⇔ m ≤ 11
Vậy với m ≤ 11 thì tam thức f(x) = – x2 – 2x + m – 12 không dương với mọi x ∈ ℝ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Trong các phát biểu sau, phát biểu nào đúng?
A. f(x) < 0 với mọi x khi và chỉ khi a < 0 và ∆ ≤ 0.
B. f(x) < 0 với mọi x khi và chỉ khi a < 0 và ∆ < 0.
C. f(x) ≤ 0 với mọi x khi và chỉ khi a > 0 và ∆ < 0.
D. f(x) ≤ 0 với mọi x khi và chỉ khi a > 0 và ∆ ≤ 0.
Câu 5:
Cho hàm số y = f(x) có đồ thị ở Hình 15.
Trong các phát biểu sau, phát biểu nào sai?
A. f(x) < 0 khi và chỉ khi x ∈ (1 ; 3).
B. f(x) ≤ 0 khi và chỉ khi x ∈ (– ∞; 1]∪[3; +∞).
C. f(x) > 0 khi và chỉ khi x ∈ (1 ; 3).
D. f(x) ≥ 0 khi và chỉ khi x ∈ [1 ; 3].
về câu hỏi!