Câu hỏi:

11/07/2024 3,799

Cho hình thoi ABCD cạnh a. Gọi R và r lần lượt là bán kính các đường tròn ngoại tiếp tam giác ABD, ABC. Chứng minh rằng: 1R2+1r2=4a2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thoi ABCD cạnh a. Gọi R và r lần lượt là bán kính các đường tròn (ảnh 1)

Gọi M, I, K là giao điểm của đường trung trực AB với AB, AC, BD, O là giao điểm của AC và BD.

Ta có: OA=OC,OB=OD,ACBD(Vì ABCD là hình thoi)

Nên AC là trung trực của BD, BD là trung trực của AC

Do đó I, K lần lượt là tâm đường tròn ngoại tiếp ΔADB,ΔABC IA=R,KB=r

Xét ΔOABΔMKBABO^ chung, AOB^=KMB^=900

Do đó: ΔOAB~ΔMKB

OBMB=ABKBOBa2=arOB2=a22r2=a44r2

Tương tự ta có: OA2=a24R2

ΔOAB vuông tại O, theo định lý Pytago ta có:

OA2+OB2=AB2a44R2+a44R2=a21R2+1r2=4a2dfcm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho một tứ giác ABCD có 2 đường chéo AC, BD vuông góc với nhau. Gọi (ảnh 1)

ΔADB có S là trung điểm AD, M là trung diểm AB

SM là đường trung bình ΔADB

SM=12DB,SM//DB

Chứng minh tương tự RN=12DB,RS//BDSMNR là hình bình hành (1)

Mà SM//BD,MN//AC,ACBDSM//MN(2)

Từ (1) và (2) suy ra SMNR là hình chữ nhật nên 4 điểm M, N, R, S cùng nằm trên đường tròn

Lời giải

Cho tam giác ABC nhọn. Vẽ đường tròn (O) có đường kính BC, nó cắt cạnh AB (ảnh 1)

a) ΔBDCOD=OB=OC=12BCΔBDC vuông tại A (theo định lý đảo đường trung tuyến ứng với cạnh huyền) CDAB

Chứng minh tương tự BEAC

b) Vì CDAB,BEAC,K là giao điểm của BE,CDK là trực tâm ΔABC

nên AKBC

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP