Giải SGK Tin học 11 KNTT Bài 24. Đánh giá độ phức tạp thời gian thuật toán có đáp án
31 người thi tuần này 4.6 380 lượt thi 12 câu hỏi
🔥 Đề thi HOT:
Bộ 4 đề thi cuối học kì 2 Tin 11 Kết nối tri thức có đáp án (Đề 1)
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 26 có đáp án
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 25 có đáp án
Bộ 4 đề thi cuối học kì 2 Tin 11 Kết nối tri thức có đáp án (Đề 2)
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 28 có đáp án
Bộ 4 đề thi giữa học kì 2 Tin 11 Kết nối tri thức có đáp án (Đề 1)
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 27 có đáp án
Bộ 4 đề thi cuối học kì 2 Tin 11 Kết nối tri thức có đáp án (Đề 3)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Chương trình 1 chạy nhanh hơn, vì chương trình 1 có 1 vòng lặp, chương trình 2 có 2 vòng lặp.
Lời giải
Chương trình 1: Thời gian thực hiện chương trình là T1=T1(n)=2+n+1=n+3 (đơn vị thời gian)
Chương trình 2: Thời gian thực hiện chương trình là T2=T1(n)=2+n2+1=n2+3 (đơn vị thời gian)
Lời giải
a) T1=1+n//3=1+1000000//3 đơn vị thời gian
b) T2=1+1+(n//3)=2+1000000//3 đơn vị thời gian
Lời giải
Sai. Trong một chương trình máy tính, có thể có nhiều phép toán tích cực (positive operations), cũng như các phép toán khác nhau, chẳng hạn phép toán cộng, trừ, nhân, chia, so sánh, gán giá trị, và các phép toán logic, v.v... Các phép toán tích cực là các phép toán thực hiện các tính chất tích cực của chương trình, như tính toán dữ liệu, xử lý logic, và đưa ra kết quả mong đợi.
Lời giải
Thuật toán là một chuỗi các bước được thiết kế để giải quyết một vấn đề cụ thể. Một trong những yếu tố quan trọng để đánh giá hiệu suất của một thuật toán là độ phức tạp thời gian, tức là thời gian mà thuật toán mất để thực thi dựa trên kích thước đầu vào của vấn đề. Phân loại thuật toán dựa trên độ phức tạp thời gian là một phương pháp được sử dụng phổ biến để đánh giá và so sánh hiệu suất của các thuật toán khác nhau. Dưới đây là một số phân loại chính dựa trên độ phức tạp thời gian của thuật toán:
-O(1) (độ phức tạp thời gian hằng số): Đây là loại thuật toán có thời gian thực thi không thay đổi theo kích thước đầu vào. Thời gian thực thi của thuật toán này là cố định, vì vậy độ phức tạp thời gian là hằng số. Ví dụ: Truy cập vào phần tử trong mảng có kích thước cố định.
-O(log n) (độ phức tạp thời gian logarithmic): Đây là loại thuật toán có thời gian thực thi tăng theo logarit của kích thước đầu vào. Thuật toán này thường được sử dụng trong các bài toán tìm kiếm nhị phân, các thuật toán chia để trị, hoặc các thuật toán sắp xếp hiệu quả như QuickSort hoặc MergeSort.
-O(n) (độ phức tạp thời gian tuyến tính): Đây là loại thuật toán có thời gian thực thi tăng tỷ lệ trực tiếp với kích thước đầu vào. Ví dụ: Duyệt qua từng phần tử trong mảng một lần.
-O(n^2) (độ phức tạp thời gian bậc hai): Đây là loại thuật toán có thời gian thực thi tăng theo bình phương của kích thước đầu vào. Ví dụ: Thuật toán sắp xếp Bubble Sort, các thuật toán tìm kiếm không hiệu quả như Linear Search trong một mảng lồng nhau.
-O(n^k) (độ phức tạp thời gian bậc k): Đây là loại thuật toán có thời gian thực thi tăng theo lũy thừa của kích thước đầu
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
76 Đánh giá
50%
40%
0%
0%
0%