Câu hỏi:
13/07/2024 2,214Cho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thỏa mãn \(BM = \frac{1}{3}BC\), \(CN = \frac{5}{4}CA\). Tính:
\(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {BN} \).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)
= \(AB.AC.\cos \widehat {BAC}\)
= \(a.a.\cos 60^\circ \)
= \(\frac{1}{2}{a^2}\)
\(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\overrightarrow {AB} + \overrightarrow {BM} } \right).\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)
\( = \left( {\overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} } \right).\left( {\frac{1}{4}\overrightarrow {CA} - \overrightarrow {AB} } \right)\)
\( = \left[ {\overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)} \right].\left( { - \frac{1}{4}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right).\left( { - \frac{1}{4}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = - \frac{2}{3}\overrightarrow {AB} .\frac{1}{4}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} .\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} .\frac{1}{4}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = - \frac{1}{6}\overrightarrow {AB} .\overrightarrow {AC} - \frac{2}{3}{\overrightarrow {AB} ^2} - \frac{1}{{12}}{\overrightarrow {AC} ^2} - \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = - \frac{1}{6}.\frac{1}{2}{a^2} - \frac{2}{3}.{a^2} - \frac{1}{{12}}.{a^2} - \frac{1}{3}.\frac{1}{2}{a^2}\)
\( = - \frac{1}{{12}}{a^2} - \frac{2}{3}.{a^2} - \frac{1}{{12}}.{a^2} - \frac{1}{6}{a^2}\)
\( = - {a^2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đoạn thẳng AB. Tập hợp các điểm M nằm trong mặt phẳng thỏa mãn \(\overrightarrow {MA} .\overrightarrow {MB} = 0\) là:
A. Đường tròn tâm A bán kính AB.
B. Đường tròn tâm B bán kính AB.
C. Đường trung trực của đoạn thẳng AB.
D. Đường tròn đường kính AB.
Câu 2:
Câu 3:
Cho tam giác ABC. Giá trị của \(\overrightarrow {BA} .\overrightarrow {CA} \) bằng:
A. AB . AC . cos\(\widehat {BAC}\).
B. – AB . AC . cos\(\widehat {BAC}\).
C. AB . AC . cos\(\widehat {ABC}\).
D. AB . AC . cos\(\widehat {ACB}\).
Câu 4:
Câu 5:
Câu 6:
Cho tam giác ABC. Giá trị của \(\overrightarrow {AB} .\overrightarrow {BC} \) bằng:
A. AB . BC . cos\(\widehat {ABC}\).
B. AB . AC . cos\(\widehat {ABC}\).
C. – AB . BC . cos\(\widehat {ABC}\).
D. AB . BC . cos\(\widehat {BAC}\).
về câu hỏi!