Câu hỏi:
13/07/2024 2,839
Cho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thỏa mãn \(BM = \frac{1}{3}BC\), \(CN = \frac{5}{4}CA\). Tính:
\(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {BN} \).
Cho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thỏa mãn \(BM = \frac{1}{3}BC\), \(CN = \frac{5}{4}CA\). Tính:
\(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {BN} \).
Quảng cáo
Trả lời:
Lời giải
Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)
= \(AB.AC.\cos \widehat {BAC}\)
= \(a.a.\cos 60^\circ \)
= \(\frac{1}{2}{a^2}\)
\(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\overrightarrow {AB} + \overrightarrow {BM} } \right).\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)
\( = \left( {\overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} } \right).\left( {\frac{1}{4}\overrightarrow {CA} - \overrightarrow {AB} } \right)\)
\( = \left[ {\overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)} \right].\left( { - \frac{1}{4}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right).\left( { - \frac{1}{4}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = - \frac{2}{3}\overrightarrow {AB} .\frac{1}{4}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} .\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} .\frac{1}{4}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = - \frac{1}{6}\overrightarrow {AB} .\overrightarrow {AC} - \frac{2}{3}{\overrightarrow {AB} ^2} - \frac{1}{{12}}{\overrightarrow {AC} ^2} - \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = - \frac{1}{6}.\frac{1}{2}{a^2} - \frac{2}{3}.{a^2} - \frac{1}{{12}}.{a^2} - \frac{1}{3}.\frac{1}{2}{a^2}\)
\( = - \frac{1}{{12}}{a^2} - \frac{2}{3}.{a^2} - \frac{1}{{12}}.{a^2} - \frac{1}{6}{a^2}\)
\( = - {a^2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là D
Ta có: \(\overrightarrow {MA} .\overrightarrow {MB} = 0\)
⇒ \(\widehat {\left( {\overrightarrow {MA} ;\overrightarrow {MB} } \right)} = \widehat {AMB} = 90^\circ \)
Do đó tập hợp các điểm M thỏa mãn \(\widehat {AMB} = 90^\circ \) là đường tròn đường kính AB.
Lời giải
Lời giải
Ta có: MA2 + MB2 + MC2 = \({\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)
= \({\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)
= \({\overrightarrow {MG} ^2} + 2.\overrightarrow {MG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2}\)
= \(3{\overrightarrow {MG} ^2} + \left( {{{\overrightarrow {GA} }^2} + {{\overrightarrow {GB} }^2} + {{\overrightarrow {GC} }^2}} \right) + \left( {2.\overrightarrow {MG} .\overrightarrow {GA} + 2\overrightarrow {MG} .\overrightarrow {GB} + 2\overrightarrow {MG} .\overrightarrow {GC} } \right)\)
= \(3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right) + 2.\overrightarrow {MG} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)
= \(3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.