Câu hỏi:
13/07/2024 2,772Cho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thỏa mãn \(BM = \frac{1}{3}BC\), \(CN = \frac{5}{4}CA\). Tính:
\(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {BN} \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)
= \(AB.AC.\cos \widehat {BAC}\)
= \(a.a.\cos 60^\circ \)
= \(\frac{1}{2}{a^2}\)
\(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\overrightarrow {AB} + \overrightarrow {BM} } \right).\left( {\overrightarrow {BA} + \overrightarrow {AN} } \right)\)
\( = \left( {\overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} } \right).\left( {\frac{1}{4}\overrightarrow {CA} - \overrightarrow {AB} } \right)\)
\( = \left[ {\overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)} \right].\left( { - \frac{1}{4}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right).\left( { - \frac{1}{4}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = - \frac{2}{3}\overrightarrow {AB} .\frac{1}{4}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} .\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} .\frac{1}{4}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = - \frac{1}{6}\overrightarrow {AB} .\overrightarrow {AC} - \frac{2}{3}{\overrightarrow {AB} ^2} - \frac{1}{{12}}{\overrightarrow {AC} ^2} - \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = - \frac{1}{6}.\frac{1}{2}{a^2} - \frac{2}{3}.{a^2} - \frac{1}{{12}}.{a^2} - \frac{1}{3}.\frac{1}{2}{a^2}\)
\( = - \frac{1}{{12}}{a^2} - \frac{2}{3}.{a^2} - \frac{1}{{12}}.{a^2} - \frac{1}{6}{a^2}\)
\( = - {a^2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đoạn thẳng AB. Tập hợp các điểm M nằm trong mặt phẳng thỏa mãn \(\overrightarrow {MA} .\overrightarrow {MB} = 0\) là:
A. Đường tròn tâm A bán kính AB.
B. Đường tròn tâm B bán kính AB.
C. Đường trung trực của đoạn thẳng AB.
D. Đường tròn đường kính AB.
Câu 2:
Câu 3:
Cho tam giác ABC. Giá trị của \(\overrightarrow {BA} .\overrightarrow {CA} \) bằng:
A. AB . AC . cos\(\widehat {BAC}\).
B. – AB . AC . cos\(\widehat {BAC}\).
C. AB . AC . cos\(\widehat {ABC}\).
D. AB . AC . cos\(\widehat {ACB}\).
Câu 4:
Câu 5:
Câu 6:
Cho tam giác ABC. Giá trị của \(\overrightarrow {AB} .\overrightarrow {BC} \) bằng:
A. AB . BC . cos\(\widehat {ABC}\).
B. AB . AC . cos\(\widehat {ABC}\).
C. – AB . BC . cos\(\widehat {ABC}\).
D. AB . BC . cos\(\widehat {BAC}\).
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận