Câu hỏi:
13/07/2024 3,691
Cho hình vuông ABCD, M là trung điểm của BC, N là điểm nằm giữa hai điểm A và C. Đặt x = \(\frac{{AN}}{{AC}}\). Tìm x thỏa mãn AM ⊥ BN.
Quảng cáo
Trả lời:
Lời giải
Gọi a là độ dài cạnh của hình vuông ABCD
Vì M là trung điểm của BC nên ta có:
\(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
⇔ \(\overrightarrow {AM} = \overrightarrow {BM} - \overrightarrow {BA} = \frac{1}{2}\overrightarrow {BC} - \overrightarrow {BA} \)
Ta lại có: \(\overrightarrow {BN} = \overrightarrow {BA} + \overrightarrow {AN} = - \overrightarrow {AB} + x\overrightarrow {AC} = - \overrightarrow {AB} + x\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) = (1 - x)\overrightarrow {BA} + x\overrightarrow {BC} \)
⇒ \(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\frac{1}{2}\overrightarrow {BC} - \overrightarrow {BA} } \right)\left[ {(1 - x)\overrightarrow {BA} + x\overrightarrow {BC} } \right]\)
⇔ \(\overrightarrow {AM} .\overrightarrow {BN} = \frac{1}{2}(1 - x)\overrightarrow {BC} .\overrightarrow {BA} + \frac{1}{2}x{\overrightarrow {BC} ^2} - \left( {1 - x} \right){\overrightarrow {BA} ^2} - x\overrightarrow {BA} .\overrightarrow {BC} \)
⇔ \(\overrightarrow {AM} .\overrightarrow {BN} = \frac{1}{2}x.{a^2} - \left( {1 - x} \right){a^2}\)
⇔ \(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\frac{3}{2}x - 1} \right){a^2}\)
Để AM vuông góc với BN thì \(\overrightarrow {AM} .\overrightarrow {BN} = 0\)
⇔ \(\left( {\frac{3}{2}x - 1} \right){a^2} = 0\)
⇔ \(\frac{3}{2}x - 1 = 0\)
⇔ \(x = \frac{2}{3}\)
Vậy với \(x = \frac{2}{3}\) thì AM ⊥ BN.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là D
Ta có: \(\overrightarrow {MA} .\overrightarrow {MB} = 0\)
⇒ \(\widehat {\left( {\overrightarrow {MA} ;\overrightarrow {MB} } \right)} = \widehat {AMB} = 90^\circ \)
Do đó tập hợp các điểm M thỏa mãn \(\widehat {AMB} = 90^\circ \) là đường tròn đường kính AB.
Lời giải
Lời giải
Ta có: MA2 + MB2 + MC2 = \({\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)
= \({\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)
= \({\overrightarrow {MG} ^2} + 2.\overrightarrow {MG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2}\)
= \(3{\overrightarrow {MG} ^2} + \left( {{{\overrightarrow {GA} }^2} + {{\overrightarrow {GB} }^2} + {{\overrightarrow {GC} }^2}} \right) + \left( {2.\overrightarrow {MG} .\overrightarrow {GA} + 2\overrightarrow {MG} .\overrightarrow {GB} + 2\overrightarrow {MG} .\overrightarrow {GC} } \right)\)
= \(3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right) + 2.\overrightarrow {MG} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)
= \(3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.