Câu hỏi:

09/08/2022 319

Cho tứ giác ABCD, I là trung điểm BD. Tìm điểm O thỏa mãn OB+4OC=2OD

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B.

Ta có:

OB+4OC=2OD

OB+4OB+BC=2OB+BD  (quy tắc ba điểm)

3OB=2BD4BC

3OB=2BDBC2BC   (quy tắc trừ hai vectơ)

3OB=2BD4BC

3OB=2BD+4CB

3OB=2CB+BD+2CB

3OB=2CD+2CB     (quy tắc ba điểm)

3OB=4CI       (do I là trung điểm của BD nên CD+CB=2CI)

OB=43CI

Cho tứ giác ABCD, I là trung điểm BD. Tìm điểm O thỏa mãn vecto OB+ 4 vecto OC= 2 vecto OD (ảnh 1)

Vậy O là đỉnh của hình bình hành IBON với IN=43IC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hai điểm A, B phân biệt. Xác định điểm M biết 2MA3MB=0.

Lời giải

Hướng dẫn giải:  

Đáp án đúng là: C.

Ta có:

2MA3MB=0

2MA3MA+AB=0      (quy tắc ba điểm)

MA3AB=0

AM=3AB

Vậy M nằm trên tia AB và AM = 3AB.

Câu 2

Cho tam giác ABC vuông tại A. Điểm M bất kì nằm trong tam giác có hình chiếu xuống BC, CA, AB theo thứ tự là D, E, F. Tìm tập hợp điểm M biết MD+ME+MF cùng phương với BC.

Lời giải

Hướng dẫn giải:  

Đáp án đúng là: A.

Cho tam giác ABC vuông tại A. Điểm M bất kì nằm trong tam giác có hình chiếu (ảnh 1)

Xét tứ giác AEMF có: EAF^=AEM^=MFA^=90°.

Do đó, AEMF là hình chữ nhật.

Áp dụng quy tắc hình bình hành ta có: ME+MF=MA.

Do đó ta có: MD+ME+MF=MD+MA.

Gọi I là trung điểm của AD.

Khi đó, MD+ME+MF=MD+MA=2MI.

Để MD+ME+MF cùng phương với BC thì MI cùng phương với BC

Do đó, MI cùng phương với PQ (do PQ là đường trung bình của tam giác ABC song song với cạnh BC).

Vì M nằm trong tam giác ABC.

Do đó M thuộc đoạn PQ.

Câu 3

Điểm I thỏa mãn IA+2IB=0 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tứ giác ABCD. Gọi G là trọng tâm của tam giác BCD. Xác định điểm P sao cho: PB+PC+PD=3AP.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tứ giác ABCD. Gọi I là trung điểm của BC. Xác định điểm M sao cho: 2MA+MB+MC=0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Điểm K thỏa mãn: KA+2KB=CB là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho tứ giác ABCD. Gọi K, H lần lượt là trung điểm của AB, CD. Xác định điểm N sao cho: NA+NB+NC+ND=0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay