Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
b) Trọng tâm G của tam giác ABC có tọa độ là:
Suy ra G(1; 0).
AH vuông góc với BC nên đường thẳng AH có vectơ pháp tuyến là:
Phương trình đường thẳng AH đi qua A(-3; -1): 0.(x + 3) – 9(y +1) = 0 ⇔ y + 1 = 0.
CH vuông góc với AB nên đường thẳng CH có vectơ pháp tuyến là: = 6(1; 1).
Phương trình đường thẳng CH đi qua C(3; -4): 1.(x - 3) + 1.(y + 4) = 0 ⇔ x + y + 1 = 0.
H là giao của AH và CH nên là nghiệm của hệ phương trình:
⇒ H(0; -1).
Gọi M, N lần lượt là trung điểm của AB, BC; d1, d2 lần lượt là trung trực của AB, BC
Suy ra M(0; 2) và N
Đường thẳng d1 vuông góc với AB nên có vectơ pháp tuyến là: = 6(1; 1).
Phương trình đường thẳng d1 đi qua M(0; 2) là: 1.(x – 0) + 1.(y – 2) = 0 hay x + y – 2 = 0.
Đường thẳng d2 vuông góc với BC nên có vectơ pháp tuyến là: .
Phương trình đường thẳng d1 đi qua N là: 0(x – 0) – 9(y – ) = 0 ⇔ y – = 0.
Giao điểm của d1 và d2 là tâm I đường tròn ngoại tiếp tam giác ABC nên tọa độ I là nghiệm của hệ:
Do đó I .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-1; - 5), B(5; 2) và trọng tâm là gốc tọa độ. Tọa độ điểm C là:
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho A(- 2; 1), B(1; - 3). Tọa độ của vectơ là:
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng
và
Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 0) và B(0; 3). Tìm tập hợp các điểm M thỏa mãn MA = 2MB.
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(- 1; - 2), đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình là 5x + y – 9 = 0 và x + 3y – 5 = 0. Tìm tọa độ của hai điểm B và C.
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho hai điểm F1(- 4; 0) và F2 (4; 0).
a) Lập phương trình đường tròn có đường kính là F1F2.
về câu hỏi!