Câu hỏi:
12/07/2024 1,312Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG lấy điểm D sao cho MD = MG.
a) Chứng minh CG là trung tuyến của tam giác ACD.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Vì G là trọng tâm tam giác ABC nên GM = GA.
Mà MD = MG (giả thiết) nên M là trung điểm của GD và GM = GD.
Suy ra GD = GA.
Do đó CG là trung tuyến của tam giác ACD.
Vậy CG là trung tuyến của tam giác ACD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho AE = AC.
a) Chứng minh E là trọng tâm tam giác BCD.
Câu 2:
Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M, N lần lượt là trung điểm của BC, CE. Gọi I, K lần lượt là giao điểm của AM, AN với BE. Chứng minh BI = IK = KE.
Câu 3:
Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.
a) Chứng minh BG = GC = CE = BE.
Câu 4:
Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G. Chứng minh:
a) BM = CN;
Câu 5:
Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.
a) Chứng minh DE = FN và tam giác DFN là tam giác cân.
về câu hỏi!