Câu hỏi:
13/07/2024 492Trong các hình 62a, 62b, 62c, 62d, hình nào có điểm cách đều các đỉnh của tam giác đó? Vì sao?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
• Hình 62a:
Xét tam giác ABC có G là giao điểm của ba đường trung tuyến AD, BE, CF nên G là trọng tâm của tam giác ABC.
Do đó G không cách đều ba đỉnh của tam giác ABC
• Hình 62b:
Xét tam giác ABC có I là giao điểm của ba đường phân giác AI, BI, CI nên I cách đều ba cạnh của tam giác ABC.
Do đó I không cách đều ba đỉnh của tam giác ABC
• Hình 62c:
Xét tam giác ABC có O là giao điểm của ba đường trung trực nên OA = OB = OC.
Do đó O cách đều ba đỉnh của tam giác ABC.
• Hình 62d:
Xét tam giác ABC có H là giao điểm của ba đường cao AI, BK, CL nên H là trực tâm của tam giác ABC.
Do đó H không cách đều ba đỉnh của tam giác ABC.
Vậy hình 62c có điểm O cách đều các đỉnh của tam giác ABC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB < AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA.
a) Chứng minh AC = EB và AC song song với EB.
Câu 2:
Cho tam giác ABC có . Các đường trung trực của AB và AC cắt cạnh BC lần lượt tại E và F. Khi đó, số đo góc EAF bằng:
Câu 3:
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB.
a) Chứng minh .
Câu 4:
Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.
Câu 5:
Cho hai tam giác ABC và MNP có Cần thêm một điều kiện để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc – cạnh – góc là:
Câu 6:
Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC; H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Chứng minh:
a) OC vuông góc với FH;
về câu hỏi!