Câu hỏi:

13/07/2024 2,536 Lưu

Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi N là giao điểm của AG và BC.

Kẻ BH ⊥ AN (H ∈ AN) và CK ⊥ AN (K ∈ AN).

• Ta có: SΔGAB=AG.BH2,SΔGCA=AG.CK2

 

SΔAGB=SΔAGC  nên  AG.BH2=AG.CK2

Suy ra BH = CK.

• Xét DBHN và DCKN có:

BHN^=CKN^(=90°),

BH = CK (chứng minh trên),

HNB^=KNC^ (hai góc đối đỉnh).

Do đó ∆BHN = ∆CKN (g.c.g).

Suy ra BN = CN (hai cạnh tương ứng)

Hay AN là đường trung tuyến của tam giác ABC.

• Chứng minh tương tự, ta có CG cũng là đường trung tuyến của tam giác ABC.

Tam giác ABC có AN, CG là hai đường trung tuyến cuả tam giác

Mà AN và CG cắt nhau tại G nên G là trọng tâm của tam giác ABC.

Vậy nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Xét DAMC và DEMB có:

AM = ME (giả thiết),

AMC^=EMB^ (hai góc đối đỉnh),

BM = CM (vì M là trung điểm của BC)

Do đó ∆AMC = ∆EMB (c.g.c).

Suy ra AC = EB (hai cạnh tương ứng) và MAC^=MEB^  (hai góc tương ứng).

MAC^  và MEB^  ở vị trí so le trong nên AC // BE.

Vậy AC = EB và AC song song với EB.

Lời giải

Media VietJack

Xét tam giác ABC có:

B^+C^+BAC^=180° (tổng ba góc trong một tam giác).

Suy ra B^+C^=180°BAC^=180°110°=70° .

Vì E thuộc đường trung trực của AB nên EB = EA.

Do đó tam giác ABE cân tại E nên EAB^=B^ .

Vì F thuộc đường trung trực của AC nên FC = FA.

Do đó tam giác ACF cân tại F nên FAC^=C^ .

Ta có BAE^+EAF^+FAC^=BAC^

Hay B^+EAF^+C^=BAC^

Do đó EAF^=BAC^B^+C^

Suy ra EAF^=110°70°=40° .

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP