Câu hỏi:

12/07/2024 755 Lưu

Cho M là một điểm tùy ý bên trong tam giác đều ABC. Lấy điểm N nằm khác phía với M đối với đường thẳng AC sao cho

và AN = AM. Chứng minh:

a) Tam giác AMN là tam giác đều;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho M là một điểm tùy ý bên trong tam giác đều ABC. Lấy điểm N nằm khác phía với M đối (ảnh 1)

a) Ta có:MAN^=MAC^+CAN^=MAC^+MAB^=BAC^=60°  (do tam giác ABC đều).

Lại có: AM = AN nên suy ra tam giác AMN cân tại A.

Vậy tam giác AMN là tam giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét tam giác ABC vuông tại A; đường phân giác góc B cắt cạnh AC tại E; đường thẳng qua E (ảnh 1)

a) Đường thẳng EK cắt BC tại H.

Do E nằm trên đường thẳng BE là đường phân giác của góc KBC nên EA = EH.

Mà trong tam giác EHC là tam giác vuông tại H có EH < EC (do EC là cạnh huyền).

Từ đó ta suy ra được: AE < EC (đpcm).

Lời giải

+) Xét bộ ba số: 7, 5, 7 có: 7 – 7 = 0 < 5 và 5 + 7 = 12 > 7.

Do đó ba số 7, 5, 7 là độ dài ba cạnh của một tam giác.

+) Xét bộ ba số: 7, 7, 7 có: 7 – 7 = 0 < 7 và 7 + 7 = 14 > 7.

Do đó ba số 7, 7, 7 là độ dài ba cạnh của một tam giác.

+) Xét bộ ba số: 3, 5, 4 có: 5 – 4 = 1 < 3 và 3 + 4 = 7 > 5

Do đó ba số 3, 5, 4 là độ dài ba cạnh của một tam giác.

+) Xét bộ ba số: 4, 7, 3 có: 3 = 7 − 4 và 7 = 4 + 3

Do đó ba số 4, 7, 3 không là độ dài ba cạnh của một tam giác.

Chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP