Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.
Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.
Câu hỏi trong đề: Bài tập Luyện tập chung có đáp án !!
Quảng cáo
Trả lời:

Giả sử tam giác ABC có AM vừa là đường trung tuyến, vừa là đường cao xuất phát từ đỉnh A.
Do AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Do đó BM = CM.
Xét vuông tại M và vuông tại M có:
AM chung.
BM = CM (chứng minh trên).
Suy ra (2 cạnh góc vuông).
Do đó AB = AC (2 cạnh tương ứng).
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta thực hiện theo các bước sau:
Bước 1. Xác định ba điểm A, B, C nằm trên rìa mảnh tôn.
Bước 2. Xác định ba đường trung trực của tam giác ABC.
Bước 3. Xác định giao điểm của ba đường trung trực của tam giác ABC.
Điểm đó là tâm của mảnh tôn.
Lời giải

Xét có NB MC, CB MN.
Mà NB cắt CB tại B nên B là trực tâm của .
Do đó BM CN.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.