Câu hỏi:

03/10/2022 704

b) Chứng minh SGCA = SGAB = 13SABC.

Nhận xét. Từ bài tập trên ta có: SGBC = SGCA = SGAB = 13SABC điều này giúp ta cảm nhận tại sao có thể đặt thăng bằng miếng bìa hình tam giác trên giá nhọn đặt tại trọng tâm của tam giác đó.

Siêu phẩm 30 đề thi thử THPT quốc gia 2024 do thầy cô VietJack biên soạn, chỉ từ 100k trên Shopee Mall.

Mua ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có AG = 2GM nên SGCA = 2SMCG; SGAB = 2SMBG.

Tam giác BGM và tam giác CGM có chung đường cao kẻ từ G. Hai đáy BM và CM bằng nhau. Do đó, SBGM = SCGM.

Suy ra,  SGBC = 2SMCG = 2SMBG.

Do đó SGCA = SGAB = SGBC = 13SABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có một mảnh tôn hình tròn cần đục một lỗ ở tâm. Làm thế nào để xác định được tâm của mảnh tôn đó?

Xem đáp án » 03/10/2022 8,587

Câu 2:

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.

Xem đáp án » 03/10/2022 3,171

Câu 3:

Cho ba điểm phân biệt thẳng hàng A, B, C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại A. Với điểm M thuộc d, M khác A, vẽ đường thẳng CM. Qua B kẻ đường thẳng vuông góc với đường thẳng CM, cắt d tại N. Chứng minh đường thẳng BM vuông góc với đường thẳng CN.

Xem đáp án » 03/10/2022 2,984

Câu 4:

Kí hiệu SABC là diện tích tam giác ABC. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của BC.

a) Chứng minh SGBC = 13SABC.

Gợi ý. Sử dụng GM = 13AM để chứng minh SGBM = 13SABM, SGCM = 13SACM.

Xem đáp án » 03/10/2022 932

Câu 5:

Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.

Xem đáp án » 03/10/2022 777

Bình luận


Bình luận