Câu hỏi:
12/07/2024 3,161
Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.
Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.
Câu hỏi trong đề: Bài tập Luyện tập chung có đáp án !!
Quảng cáo
Trả lời:
Gọi Ax là tia đối của tia AC.
Do At là tia phân giác của nên .
Do At // BC nên (2 góc đồng vị).
Do At // BC nên (2 góc so le trong).
Mà nên .
Xét có nên cân tại A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta thực hiện theo các bước sau:
Bước 1. Xác định ba điểm A, B, C nằm trên rìa mảnh tôn.
Bước 2. Xác định ba đường trung trực của tam giác ABC.
Bước 3. Xác định giao điểm của ba đường trung trực của tam giác ABC.
Điểm đó là tâm của mảnh tôn.
Lời giải
Giả sử tam giác ABC có AM vừa là đường trung tuyến, vừa là đường cao xuất phát từ đỉnh A.
Do AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Do đó BM = CM.
Xét vuông tại M và vuông tại M có:
AM chung.
BM = CM (chứng minh trên).
Suy ra (2 cạnh góc vuông).
Do đó AB = AC (2 cạnh tương ứng).
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.