Câu hỏi:

13/07/2024 847

Cho ba điểm phân biệt thẳng hàng A, B, C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại A. Với điểm M thuộc d, M khác A, vẽ đường thẳng CM. Qua B kẻ đường thẳng vuông góc với đường thẳng CM, cắt d tại N. Chứng minh đường thẳng BM vuông góc với đường thẳng CN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ba điểm phân biệt thẳng hàng A, B, C. Gọi d là đường thẳng vuông góc với đường (ảnh 1)

Gọi giao của BN và CM là F thì NF MC tại F.

Trong tam giác MNCCA \[ \bot \] MN (vì d AB tại A), NF \[ \bot \] MC, AC giao với NF tại B nên B là trực tâm của tam giác MNC.

Suy ra BM là đường cao của tam giác MNC hay BM vuông góc với đường thẳng CN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một (ảnh 1)

Ta có AM vừa là đường trung tuyến vừa là đường cao xuất phát từ đỉnh A của tam giác ABC.

Xét hai tam giác vuông ABM và ACM, ta có: AM chung, BM = CM

nên ∆ABM = ∆ACM (hai cạnh góc vuông).

Suy ra AB = AC.

Tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Lời giải

Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH.  (ảnh 1)

Từ câu a) ∆AHB = ∆AHC , suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng).

Ta có AC // HD, suy ra \(\widehat {{A_2}} = \widehat {{H_1}}\) (so le trong), từ đó \(\widehat {{A_1}} = \widehat {{H_1}}\) nên ∆ADH cân tại D, suy ra AD = DH.         (1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP