Câu hỏi:
13/07/2024 2,477
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
Gọi M là trung điểm của AC, CD cắt AH tại G. Chứng minh ba điểm B, G, M thẳng hàng.
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
Câu hỏi trong đề: Giải VTH Toán 7 KNTT Luyện tập chung trang 82 có đáp án !!
Quảng cáo
Trả lời:

Ta có \(\widehat {{A_1}} + \widehat {ABH} = 90^\circ \) (vì tam giác AHB vuông tại H), \(\widehat {{H_1}} + \widehat {{H_2}} = \widehat {AHB} = 90^\circ \) (AH vuông góc với BC tại H). Vì \(\widehat {{A_1}} = \widehat {{H_1}}\) nên \(\widehat {ABH} = \widehat {{H_2}}\), suy ra tam giác BHD cân tại D, do đó BD = DH. (2)
Từ (1) và (2) suy ra D là trung điểm của AB.
Tam giác ABC có CD, AH là hai trung tuyến cắt nhau tại G nên G là trọng tâm tam giác.
Khi đó BG là trung tuyến, M là trung điểm của AC nên BG đi qua M, tức B, G, M thẳng hàng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có AM vừa là đường trung tuyến vừa là đường cao xuất phát từ đỉnh A của tam giác ABC.
Xét hai tam giác vuông ABM và ACM, ta có: AM chung, BM = CM
nên ∆ABM = ∆ACM (hai cạnh góc vuông).
Suy ra AB = AC.
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Lời giải

Từ câu a) ∆AHB = ∆AHC , suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng).
Ta có AC // HD, suy ra \(\widehat {{A_2}} = \widehat {{H_1}}\) (so le trong), từ đó \(\widehat {{A_1}} = \widehat {{H_1}}\) nên ∆ADH cân tại D, suy ra AD = DH. (1)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.