Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
Gọi M là trung điểm của AC, CD cắt AH tại G. Chứng minh ba điểm B, G, M thẳng hàng.
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
Quảng cáo
Trả lời:
Ta có \(\widehat {{A_1}} + \widehat {ABH} = 90^\circ \) (vì tam giác AHB vuông tại H), \(\widehat {{H_1}} + \widehat {{H_2}} = \widehat {AHB} = 90^\circ \) (AH vuông góc với BC tại H). Vì \(\widehat {{A_1}} = \widehat {{H_1}}\) nên \(\widehat {ABH} = \widehat {{H_2}}\), suy ra tam giác BHD cân tại D, do đó BD = DH. (2)
Từ (1) và (2) suy ra D là trung điểm của AB.
Tam giác ABC có CD, AH là hai trung tuyến cắt nhau tại G nên G là trọng tâm tam giác.
Khi đó BG là trung tuyến, M là trung điểm của AC nên BG đi qua M, tức B, G, M thẳng hàng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có AM vừa là đường trung tuyến vừa là đường cao xuất phát từ đỉnh A của tam giác ABC.
Xét hai tam giác vuông ABM và ACM, ta có: AM chung, BM = CM
nên ∆ABM = ∆ACM (hai cạnh góc vuông).
Suy ra AB = AC.
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Lời giải

Từ câu a) ∆AHB = ∆AHC , suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng).
Ta có AC // HD, suy ra \(\widehat {{A_2}} = \widehat {{H_1}}\) (so le trong), từ đó \(\widehat {{A_1}} = \widehat {{H_1}}\) nên ∆ADH cân tại D, suy ra AD = DH. (1)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.