Câu hỏi:

13/07/2024 2,918

Cho tam giác ABC cân tại A, đường cao AH (H BC).

Chứng minh chu vi ∆ABC lớn hơn AH + 3BG.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh chu vi tam giác ABC lớn hơn AH + 3BG.  (ảnh 1)

Trên tia BM lấy điểm K sao cho M là trung điểm của BK, khi đó 2BM = BK.

Vì G là trọng tâm của tam giác ABC nên 3BG = 2BM. Từ đó BK = 2BM = 3BG.

Ta chứng minh được ∆BMC = ∆KMA (c.g.c), suy ra BC = AK.

Trong tam giác ABK, ta có:

AK + AB > BK hay BC + AB > BK, mà BK = 2BM = 3BG nên BC + AB > 3BG. (3)

Trong tam giác vuông AHC, ta có AC > AH.         (4)

Từ (3) và (4) suy ra BC + AC + AB > AH + 3BG.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.

Xem đáp án » 13/07/2024 3,035

Câu 2:

Cho tam giác ABC cân tại A, đường cao AH (H BC).

Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH.

Xem đáp án » 13/07/2024 2,610

Câu 3:

Cho tam giác ABC cân tại A, đường cao AH (H BC).

Gọi M là trung điểm của AC, CD cắt AH tại G. Chứng minh ba điểm B, G, M thẳng hàng.

Xem đáp án » 13/07/2024 1,542

Câu 4:

Cho tam giác ABC cân tại A, đường cao AH (H BC).

Chứng minh ∆AHB = ∆AHC.

Xem đáp án » 13/07/2024 1,164

Câu 5:

Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.

Xem đáp án » 13/07/2024 959

Câu 6:

Cho ba điểm phân biệt thẳng hàng A, B, C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại A. Với điểm M thuộc d, M khác A, vẽ đường thẳng CM. Qua B kẻ đường thẳng vuông góc với đường thẳng CM, cắt d tại N. Chứng minh đường thẳng BM vuông góc với đường thẳng CN.

Xem đáp án » 13/07/2024 600

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store