Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
Chứng minh chu vi ∆ABC lớn hơn AH + 3BG.
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
Chứng minh chu vi ∆ABC lớn hơn AH + 3BG.
Quảng cáo
Trả lời:

Trên tia BM lấy điểm K sao cho M là trung điểm của BK, khi đó 2BM = BK.
Vì G là trọng tâm của tam giác ABC nên 3BG = 2BM. Từ đó BK = 2BM = 3BG.
Ta chứng minh được ∆BMC = ∆KMA (c.g.c), suy ra BC = AK.
Trong tam giác ABK, ta có:
AK + AB > BK hay BC + AB > BK, mà BK = 2BM = 3BG nên BC + AB > 3BG. (3)
Trong tam giác vuông AHC, ta có AC > AH. (4)
Từ (3) và (4) suy ra BC + AC + AB > AH + 3BG.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có AM vừa là đường trung tuyến vừa là đường cao xuất phát từ đỉnh A của tam giác ABC.
Xét hai tam giác vuông ABM và ACM, ta có: AM chung, BM = CM
nên ∆ABM = ∆ACM (hai cạnh góc vuông).
Suy ra AB = AC.
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Lời giải

Từ câu a) ∆AHB = ∆AHC , suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng).
Ta có AC // HD, suy ra \(\widehat {{A_2}} = \widehat {{H_1}}\) (so le trong), từ đó \(\widehat {{A_1}} = \widehat {{H_1}}\) nên ∆ADH cân tại D, suy ra AD = DH. (1)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.