Câu hỏi:

13/07/2024 692

Cho tam giác ABC (AB > AC). Trên đường thẳng chứa cạnh BC, lấy điểm D và điểm E sao cho B nằm giữa D và C, C nằm giữa B và E, BD = BA, CE = CA (H.9.44).

Cho tam giác ABC (AB > AC). Trên đường thẳng chứa cạnh BC, lấy điểm D và (ảnh 1)

So sánh \[\widehat {A{\rm{D}}E}\]\[\widehat {A{\rm{ED}}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC (AB > AC). Trên đường thẳng chứa cạnh BC, lấy điểm D và (ảnh 2)

Tam giác ABD cân tại B (AB = BD) và có góc ngoài tại đỉnh B \(\widehat {ABC}\)

nên \(\widehat D = \widehat {{A_1}} = \frac{1}{2}\widehat {ABC}\).

Tam giác ACE cân tại C (AC = CE) và có góc ngoài tại đỉnh C \(\widehat {ACB}\)

nên \(\widehat E = \widehat {{A_2}} = \frac{1}{2}\widehat {ACB}\).

Do AB > AC nên \(\widehat {ACB} > \widehat {ABC}\), suy ra \(\frac{1}{2}\widehat {ACB} > \frac{1}{2}\widehat {ABC}\) hay \(\widehat E > \widehat D\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\Delta ABE\] có C là trung điểm của AE nên BC là đường trung tuyến của \[\Delta ABE\].

BC = BD + DC = 2DC + DC = 3DC.

Do đó DC = \[\frac{1}{3}\]BC, BD = \[\frac{2}{3}\]BC.

Trên đường trung tuyến BC có điểm D thỏa mãn BD = \[\frac{2}{3}\]BC nên D là trọng tâm của \[\Delta ABE\].

Do đó AD là đường trung tuyến của \[\Delta ABE\].

\[\Delta ABE\] có AD vừa là đường trung tuyến, vừa là đường phân giác nên \[\Delta ABE\] cân tại A.

Lời giải

Cho tam giác ABC cân tại A. Chứng minh tam giác ADE cân.  (ảnh 1)

Do ∆ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\) suy ra \(\widehat {ABD} = \widehat {ACE}\) (cùng bù với góc \(\widehat {ABC}\), \(\widehat {ACB}\)).

Xét ∆ABD và ∆ACE có:

AB = AC (do tam giác ABC cân tại A)

\(\widehat {ABD} = \widehat {ACE}\) (chứng minh trên),

BD = CE (theo giả thiết).

Suy ra ∆ABD = ∆ACE (c.g.c), do đó AD = AE (hai cạnh tương ứng), suy ra tam giác ADE cân tại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP