Câu hỏi:

19/10/2022 1,332

Cho đường tròn (O) ngoại tiếp tam giác ABC, từ điểm M trên cung BC không chứa điểm A, hạ các đường vuông góc với BC; CA; AB lần lượt tại D; H; K. Chứng minh rằng: BCMD=CAMH+ABMK

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) ngoại tiếp tam giác ABC, từ điểm M trên cung BC không chứa điểm A,  (ảnh 1)

Từ A kẻ đường thẳng song song với BC cắt (O) tại N => AB = NC => BMN^=AMC^

Gọi E là giao điểm của BC và MN;
CBM^=CAM^;BEM^=12 sđ BM+CN
=12BM+AB=ACM^

ð ∆BME ~ ∆AMC, có MH và MD là 2 đường cao tương ứng=> ACMH=BEMD (1)

MCB^=MAB^;CMN^=AMB^NC=AB

ð ∆CME ~ ∆AMB; có MD; MK là 2 đường cao tương ứng => CEMD=ABMK(2)

Từ (1) và (2) => ACMH+ABMK=BEMD+CEMD=BCMD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trình bày lời giải

Từ điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB và một cát tuyến MCD.  (ảnh 1)

Ta có  MAC^=ADC^ (góc tạo bởi tiếp tuyến và dây cung); AMD^  chung. Suy ra ΔMACΔMDA  (g-g) suy ra:  MA2= MC.MD  và MAMD=ACAD

Tương tự: ΔMBCΔMDB  suy ra: MBMD=BCBD

Xét MCMD=MC.MDMD2=MA2MD2=MAMDMBMD=ACADBCBD (1) 

Mặt khác : ΔIACΔIDB   suy ra: ICIB=ACBD

ΔIBCΔIDA  suy ra:  IBID=BCAD ;

Do đó:ACADBCBD=ACBDBCAD=ICIBIBID=ICID (2) 

Từ (1) và (2) suy ra: ICID=MCMD .

Lời giải

Trình bày lời giải:

Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác góc A cắt BC tại D và cắt đường tròn tại điểm thứ hai là M.  (ảnh 1)

 A1^=A2^B1^=A2^   ( góc nội tiếp) nên B1^=A1^ .

 ΔMBDΔMAB   (g.g) MDMB=MBMAMDMK=MKMA

Kết hợp với DMK^=AMK^  (góc chung)

ta có: ΔDMKΔ KMA  (c.g.c) MDK^=MKA^=90°

Vậy DK ^AM.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP