Câu hỏi:

19/08/2025 3,438 Lưu

Cho đường tròn (O) trong đó có ba dây bằng nhau AB, AC, BD sao cho hai dây AC, BD cắt nhau tại M tạo thành góc vuông AMB. Tính số đo các cung nhỏ AB, CD.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho đường tròn (O) trong đó có ba dây bằng nhau AB, AC, BD sao cho hai dây AC, BD cắt nhau tại (ảnh 1)

Đường tròn (O) có dây: AB = AC = BD

Suy ra sđ AB = sđ AC = sđ BD 

Do đó: sđ AD = sđ AC - sđ CD 

= sđ BD - sđ DC = sđ BC 

Theo định lý góc có đỉnh bên trong đường tròn, ta có:

AD + sđ BC = 2. sđ BMC^=2.900=1800 

nên sđ AD = sđ BC = 900

Lại có: sđ AB + sđ CD = 2. sđ ABC^=1800 

Hơn nữa sđ AB = sđ BD = sđ BC + sđ DC = 900 + sđ DC

Suy ra: sđDC  = 450; sđ AB = 900 + 450 = 1350

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, điểm M thuộc cung nhỏ BC.  (ảnh 1)

DAE^=sdDBM2   (góc nội tiếp) .

AFD^=sdDB+sdMB2=sdDBM2( góc có đỉnh ở bên trong đường tròn)

Suy ra DAE^=AFD^

Lời giải

Đường tròn (O) có:

Cho đường tròn (O) và hai đường kính vuông góc AB và CD. Trên cung BD lấy một điểm M.  (ảnh 1)

EMF^=12sđ​​  CBM (góc giữa tiếp tuyến và dây đi qua tiếp điểm)

EMF^=12(sđMB+sđBC)

EFM^=12(sđMB+sđAC) (góc có đỉnh ở trong đường tròn (O)

Mà: sđBC=sđAC=90o (vì CDAB ).

Do đó: EMF^=EFM^ΔEFM cân tại E. Vậy: EF = EM

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP