Câu hỏi:
12/07/2024 4,876
Cho hình thoi ABCD có góc A bằng , AB = a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng 6 điểm E, F, G, H, B, D cùng nằm trên một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo a.
Cho hình thoi ABCD có góc A bằng , AB = a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng 6 điểm E, F, G, H, B, D cùng nằm trên một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo a.
Câu hỏi trong đề: Bài tập Toán 9 Chủ đề 3: Tứ giác nội tiếp có đáp án !!
Quảng cáo
Trả lời:

Gọi O là giao điểm của AC và BD ta có OB = OD
Do ABCD là hình thoi nên ta có .
Ta có nên (tính chất đường chéo hình thoi)
Tam giác ABO vuông tại O có
Xét tam giác vuông ABO có ( hai góc phụ nhau) mà suy ra hay
( tính chất đường trung tuyến trong tam giác vuông và E là trung điểm của AB.
Tam giác EOB là tam giác cân tại E có nên tam giác EBO là tam giác đều
Chứng minh tương tự với các tam giác vuông BOC, COD và DOA ta có :
Vậy 6 điểm E, F, G, H, B, D cùng nằm trên một đường tròn tâm O. Bán kính
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Do
Vì E và F đối xứng với nhau qua BD nên BD là đường trung trực của đoạn thẳng EF
(c-c-c)
Gọi O là trung điểm của BD.
Xét tam giác vuông ABD vuông tại A có AO là trung tuyến nên
Tam giác vuông BDE vuông tại E có OE là trung tuyến nên
Tam giác vuông BFDvuông tại F có OF là trung tuyến nên
Từ . Vậy 5 điểm A, B, E, D, F cùng nằm trên một đường tròn tâm O với O là trung điểm của BC.
Lời giải

Do AC và AB là các tiếp tuyến nên
Do I là trung điểm của ED nên
(đường kính đi qua trung điểm của dây thì vuông góc với dây cung)
hay
Gọi P là trung điểm của OA
Xét tam giác vuông OCA có CP là đường trung tuyến nên
Xét tam giác vuông OBA có BP là đường trung tuyến nên
Xét tam giác vuông OIA có IP là đường trung tuyến nên
Vậy nên 5 điểm O,B,A,C,I cùng thuộc một đường tròn.