Câu hỏi:

12/07/2024 603

Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:

M là trung điểm của đoạn thẳng BC

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì ∆AMB = ∆AMC nên: MB = MC (hai cạnh tương ứng);

\(\widehat {BAM}\) = \(\widehat {CAM}\), \(\widehat {AMB}\) = \(\widehat {AMC}\) (hai góc tương ứng)

Do điểm M nằm giữa hai điểm B, C và MB = MC nên M là trung điểm của đoạn thẳng BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

- Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng………. và các góc tương ứng…………..

- Khi hai tam giác ABC và A’B’C’ bằng nhau thì ta kí hiệu là: ………………………

(Hình 20)

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng và các góc tương ứng (ảnh 1)

Quy ước: Khi viết hai tam giác bằng nhau, tên đỉnh của hai tam giác đó phải viết theo đúng thứ tự tương ứng với sự bằng nhau.

+ Nếu AB = A’B’, BC = B’C’, CA = C’A’ và \(\widehat A\)= \(\widehat {A'}\), \(\widehat B\)= \(\widehat {B'}\), \(\widehat C\)= \(\widehat {C'}\) thì ∆ABC = …

+ Nếu ∆ABC = ∆A’B’C’ thì AB = …., …. = B’C’, CA = …. và ….= \(\widehat {A'}\), \(\widehat B\)=….,…= \(\widehat {C'}\)

Xem đáp án » 12/07/2024 2,097

Câu 2:

Cho Hình 22, ở đóOAB = ∆OCD. Chứng minh a // b.

Cho Hình 22, ở đó tam giác OAB = tam giác OCD. Chứng minh a // b. (ảnh 1)

Xem đáp án » 12/07/2024 1,257

Câu 3:

Cho ∆ABC = ∆MNP và \(\widehat A\) + \(\widehat N\) = 125o. Tính số đo góc P.

Xem đáp án » 12/07/2024 1,200

Câu 4:

Cho ∆ABC = ∆MNP, AC = 4 cm, \(\widehat {MPN}\)= 45o. Tính độ dài cạnh MP và số đo góc ACB.

Xem đáp án » 12/07/2024 868

Câu 5:

Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:

Tia AM là tia phân giác của góc BAC và AM \( \bot \) BC.

Xem đáp án » 12/07/2024 652

Câu 6:

Cho biết ∆ABC = ∆DEG, AB = 3cm, BC = 4 cm, CA = 6 cm. Tính độ dài các cạnh của tam giác DEG

Xem đáp án » 12/07/2024 567

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn